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Abstract. Results produced by a parallel application are typically col-
lected and visualized on one display accessible to a single user. Collabo-
ration between several researchers is usually achieved by sharing entire
desktops. We have developed a system that shares windows, both from
parallel applications and from desktop applications, with other users or to
a wall-sized, high resolution display. Parallel applications can create sev-
eral shared windows for each thread or process, enabling runtime visual-
ization and monitoring. To aid collaboration, we provide multiple cursors
for use on a display wall, allowing several researchers to interact simul-
taneously with windows shared by parallel and desktop applications. We
measure the system’s performance, and show that using shared windows
for runtime visualization of the Mandelbrot computation increases the
application’s execution time by approximately 1.4%, while performance
for sharing desktop application windows is halved as the number of users
is doubled.

Keywords: Display wall, shared windows, multiple cursors.

1 Introduction

Current systems for runtime visualization of results from cluster applications are
limited in their support for collaboration [1], as they rely on the X Window Sys-
tem [2] for window management and display. Visualization is typically done by a
single user on a single display, making collaboration difficult. To collaborate, re-
searchers have to share their entire display, which is often more than is necessary
or desired. Finally, there are no standard desktop environments for wall-sized,
high-resolution, tiled displays (display walls) that offer multiple cursors [3].

We have developed a system that can share windows from a parallel appli-
cation and from desktop applications, and which provides support for multiple
cursors on a display wall. Windows can be shared with other users and to a
display wall, while the system’s support for multiple cursors enables researchers
to interact with shared parallel and desktop application windows on a display
wall.

Figure 1 shows a user looking at a visualization of the Mandelbrot fractal,
where each process of the parallel Mandelbrot computation draws into its own,
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shared window. On the display wall, the shared windows are displayed and placed
next to each other to form a complete picture, whereas on the lower-resolution
laptop display, there is only room for one window at a time.

Fig. 1. A user looking at a visualization of
the Mandelbrot fractal using shared win-
dows on a display wall. The windows are
placed next to each other, forming a com-
plete picture.

Two scenarios further motivate the
system presented in this paper. The
first scenario concerns the use of
shared windows as a means for run-
time inspection of parallel applica-
tions. Each process of the parallel
application creates a shared window,
and uses it to visualize results or mon-
itor the parallel application’s perfor-
mance. Figure 2 illustrates this sce-
nario.

In the second scenario, a group of
researchers visualize a set of results
on their desktop computers. To share
data, they need to share desktop ap-
plication windows with each other and
a display wall. The other users can in-
teract with the shared windows, mod-
ifying the shared view or change other
settings as if the windows were local.
On the display wall, several users can interact simultaneously using multiple
cursors.

To meet the demands from these scenarios, our system should (i) support
sharing of windows between different window systems and hardware platforms,
and (ii) support the use of several cursors on a single, large desktop on a display
wall.

We evaluate the performance of the parallel application window sharing sub-
system by sharing windows containing the output from a parallel version of Man-
delbrot, demonstrating that windows can be shared with less than 1.4% increase
in the parallel application’s execution time. This low impact on performance is
due to a number of factors. First, the Mandelbrot application generates new con-
tent only about every five seconds, which means that the window sharing system
only needs to provide updates to the shared windows at this rate. A higher rate
of updates would likely increase the overhead from the window sharing system.
Second, the benchmark was run without load balancing at either the application
or system level, resulting in ample time for the window sharing system to run in
on most nodes. Finally, since the window sharing system runs as a thread inside
each process of the parallel application, it knows when the parallel application
updates its shared windows and thus avoids sending unnecessary updates.

For the desktop application window sharing subsystem, the performance de-
creases by a factor of two when the number of window subscribers is doubled.
This is caused by a combination of having to poll window contents in order to
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discover updates, the request-based protocol between publisher and subscribers,
and the publisher’s implementation. The publisher batches requests, before a
best-effort timer fires and makes the publisher process the requests, polling the
window for updates at the same time.

Fig. 2. Windows shared by a parallel application are
accessed both for collaboration on a display wall and
monitoring on a laptop

Parallel application win-
dow sharing performs bet-
ter, since the window
sharing system is integrated
with the parallel application
at the source code level. In
contrast, sharing desktop ap-
plication windows does not
require modifications to the
desktop application’s source
code, at the cost of lower per-
formance.

Our main contribution
with this paper is the integra-
tion of (i) shared windows as
a means for runtime visualiza-

tion of results and state directly from processes of a parallel application, (ii) the
ability to share desktop application windows rather than a user’s entire desktop,
(iii) displaying shared windows from both parallel and desktop applications on
a wall-sized, high-resolution tiled display, and (iv) support for multiple cursors
on a display wall.

2 Related Work

VNC [4] and other remote desktop solutions [5,6] allows one to share an entire
desktop. Although some VNC implementations can restrict the shared area to
regions of the desktop, this does not amount to true window sharing, as any
window brought within the shared region will be visible to others, whether in-
tentional or not. SharedAppVNC [7] enables sharing of independent windows
over VNC’s Remote Framebuffer protocol on Mac OS X, Windows and Linux.
The technique and code we developed for sharing windows on Mac OS X was
shared with the developers of SharedAppVNC.

VNC is based on sharing the pixel representation of a remote display. We
use the same approach in our window sharing system. In THINC [6], the au-
thors demonstrate a solution that achieves better performance, in part due to
their use of lower-level drawing operations to reduce communication. Their tech-
niques are more complex to integrate into the window sharing system, as they
rely on installing drivers into the X Server and intercept drawing operations to
the framebuffer. The operations are then encoded and transmitted to clients.
Due to the low level at which this is implemented, THINC has no concept of in-
dividual windows. In our opinion, this makes a window sharing implementation
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utilizing ideas from THINC harder to realize. Other systems that use drawing
operations to transfer display contents include the X Window System [2] and
Microsoft Remote Desktop. We have chosen to share windows using their pixel
representation, as parameters like coordinate systems, color spaces and line cap
styles can be ignored.

Microsoft’s Messenger and NetMeeting software [8] support application shar-
ing under Microsoft Windows. Citrix’ Presentation Server [9] supports applica-
tion sharing across platforms. The drawback of application sharing is that it does
not support sharing single windows. A shared application with multiple windows
would make all those windows visible to other users, while window sharing would
allow just a single window from the application to be shared. WinCuts [10] can
support window sharing on Windows, but does not support interaction, and
only updates windows once per second. For the X Window System, there are
many application sharing solutions, including XTV [11] and Hewlett-Packard’s
commercial Shared X. Xmove [12] allows one to move applications between X
servers, but does not support sharing the application with several users at the
same time. MAST [13] is a tool that supports pixel-based application sharing
for the Access Grid [14] on Microsoft Windows and Linux.

The MPI Parallel Environment, MPE [1], supports the creation of windows
from each thread or process within a parallel application. Since MPE relies
on the X Window System, the end-point for the visualization has to be fixed
statically before starting the parallel application. That is, the X Server to use
for display must be set prior to execution and can not be changed at runtime.
Application sharing solutions like XTV or Xmove can alleviate this, but require
that additional end-points also run the X Window System. Our window sharing
system is more flexible, since the end-points are bound dynamically on-demand,
and allows windows to be shared with computers running both Linux (X Window
System) and Mac OS X. To visualize 3D data on display walls, software like
Chromium [15] can be used. There is no concept of sharing visualizations in
Chromium.

The first work on multiple cursors was Engelbart and English’ paper from
1968 [16], where the mouse was introduced as an input device. One user had a
controlling mouse, while the remaining users had mice that could only be used
for pointing, and not interacting. Time-sharing the system cursor is used in [17],
where a multi-cursor window manager similar to our own is presented. Their
implementation adds a cursor ID to unused bits in the X event structure, which
limits the number of cursors to seven. Multi-cursor events are then handled by
removing the cursor ID and re-sending the cursor event to the X server as a
regular system cursor event. Our implementation does not limit the number of
cursors and does not require events to pass through the X server more than once.
The Multi-Pointer X Server, MPX [18], integrates support at the hardware layer
for several cursors, driven by mice connected to the computer running the X
server. Presently, MPX only supports a single keyboard.
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3 Model, Design and Implementation

In VNC, clients pull a single desktop from a VNC server. Our window sharing
system is based on the publish-subscribe model. A publisher shares one or more
windows through a publishing service. Subscribers access shared windows by
connecting to the service, from which they can select the windows they are
interested in and display them to the user. The service notifies subscribers when
new windows are published, or old windows removed.

The service is realized using one or more servers, with publishers and sub-
scribers acting as clients. The servers support network discovery using multicast,
allowing clients to discover them on a LAN. Clients connect to servers over TCP
for publishing or subscribing to shared windows. Subscribing clients are realized
as separate processes, and receive updates to windows they subscribe to after
requesting an update from the publishing client. For parallel applications, the
publishing client is realized as a thread inside the parallel application. For desk-
top applications, the publishing client is realized as a separate process. Windows
are shared using their pixel representation.

To illustrate how the window sharing system works in a parallel application,
we added it to a parallel solver for the Mandelbrot fractal set. The solver on
each node originally worked by displaying its part of the solution when all the
nodes were done. In our modified version, the solver begins by creating a shared
window. The shared window is maintained by a separate thread, and instead
of displaying the solution when all nodes are done, the thread reads pixel data
from memory, and sends an update to the shared window.

We have implemented window sharing for desktop applications on Mac OS X,
allowing Mac OS X windows to be published to subscribers running on Mac OS X
and Linux desktops, including the Linux-based display wall desktop. No changes
to desktop applications are required in order to share their windows. On Mac OS
X, each window is backed by a memory buffer that contains the most up-to-date
window contents. Sharing such a window amounts to transmitting the contents
of that buffer to subscribers. We use a polling approach on the buffer, as the
OS does not notify the publisher when there are changes to other applications’
windows. The user can configure the publisher to either send everything or detect
changes in the buffer. The decision of which to use will impact the publisher’s
CPU and bandwidth usage. For static windows, change detection will reduce
the bandwidth required for keeping subscribers updated, whereas for a window
that is frequently updated, the bandwidth savings will be very small. Change
detection is a very costly operation, as it requires calculating a diff between the
last contents sent to subscribers, and the current version of the window. The OS
X window sharing implementation is further detailed in [19].

The multiple cursor model is based on a service that handles cursor and
keyboard input from a number of different users. Users push input events to
the service, and the service is responsible for forwarding them from users to
applications running on the desktop the service adds multi-cursor support to.

The service is realized as a server. The server runs in a thread, which in turn
resides in the same process as a window manager for the X Window System.
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Input from users is sent to the server via clients that run on the users’ desktops.
For each client, the server creates a cursor that is visible on the multi-cursor
enabled desktop.

To emulate support for multiple cursors in the single-cursor X Window System
environment, the system cursor is time-shared. For instance, when a user clicks
his mouse button, the system cursor is moved to the position of that user’s
virtual cursor, and a mouse click event is posted. For applications, this creates
the illusion that a single user is working on the desktop, when in reality there
are several. For users, the illusion of several cursors supported by the window
system is created. This approach is similar to the one taken in [17].

We implemented the design by incorporating the server thread in the Window
Maker1 window manager. Each client connects to the server over TCP, and is
assigned a “virtual cursor.” The virtual cursor maintains state associated with
the client (such as current focus window and TCP socket information), and
provides the actual cursor visible on the desktop to the user. The virtual cursor
is drawn by creating an X Window, and modifying the window’s appearance to
match that of a cursor using the XShape extension. Different cursors are assigned
different colors, and input events are posted using the XTestExtension.

4 Experiments

The hardware used for the experiments was (i) a 28-node cluster (Intel P4
EM64T, 3.2 GHz, 2GB RAM, hyperthreading enabled) running Rocks 3.32, (ii)
a PowerMac Dual-G5 (2.5 GHz, 4GB RAM) running Mac OS X 10.4.2, (iii) a
stand-alone PC (identical hardware configuration as the cluster nodes) running
RedHat Enterprise Linux 4, (iv) a display wall (28 tiles, 1024x768 resolution
per tile) with a combined resolution of 7168x3072, and (v) a GigaBit Ethernet.
The cluster nodes are connected to a switch, and the remaining computers are
connected to a second switch, with a single link joining the two switches. The
cluster nodes also drive the individual tiles of the display wall.

We evaluated the impact of the window sharing system on parallel application
performance by sharing windows from a parallel solver for the Mandelbrot fractal
set. We measured the execution time of the parallel application both with and
without window sharing running on the 28-node cluster. When window sharing
was enabled, each node running the computation shared one window each, and
each window had one subscriber. All the subscribers ran on the RedHat box.
The experiment was repeated five times without window sharing, and five times
with. The execution time for the Mandelbrot computation when running without
window sharing was between 64.63 and 64.78 seconds, while the execution time
when running with window sharing was between 65.40 and 66.19 seconds - an
average increase of 1.38%.

We measured the performance of desktop application window sharing by shar-
ing a window on the PowerMac G5 sized at 508x519 pixels in 32-bit color. The
1 http://www.windowmaker.org/
2 http://www.rocksclusters.org/
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window contained an animation that updated at 30 frames per second (fps).
The PowerMac G5 shared the window with subscribers running on the 28-node
cluster. We conducted experiments varying the number of subscribers from 1 to
28, running each subscriber on a separate cluster node. We also conducted an
experiment with 56 subscribers, where each node ran two subscribers. The Mac
OS X publisher was configured to update the shared window at 30 fps with-
out change detection, ideally reaching 30 fps at each subscriber. We measured
the publisher’s CPU load, the publisher’s bandwidth usage and the number of
frames received per second by each subscriber.

Fig. 3. The publisher’s CPU load and
bandwidth usage. For 1 to 28 subscribers,
one subscriber runs on each node, while for
56 subscribers, two subscribers run on each
node.

Figure 3 relates the publisher’s
CPU load with the publisher’s band-
width usage, with an increasing
number of subscribers to the shared
window. There is a clear correlation
between CPU load and bandwidth us-
age, both steadily increasing until lev-
eling out at about ten subscribers. At
this level and beyond, the network is
saturated, while the publisher still has
available processing resources to han-
dle additional subscribers.

Figure 4 shows the average frame
rate at the subscribers. With a single
subscriber, about 28 fps is achieved,
with 56 subscribers, the frame rate is
1.6. In general, doubling the number
of subscribers cuts the frame rate ap-
proximately in half.

Fig. 4. Average frame rate as seen by each sub-
scriber for sharing a single desktop application
window

For the first few subscribers,
Figure 3 shows that the pub-
lisher has available processing re-
sources and network bandwidth
but is unable to provide the sub-
scribers with updates sufficiently
fast to reach the target frame rate.
There are two factors that con-
tribute to this behaviour. First,
subscribers must request updates
from the publisher in order to re-
ceive them. If the subscribers do
not do this sufficiently fast, the re-
sulting frame rate will be lower.
Second, the publisher accepts re-
quests and processes them in
batches. Each iteration is started
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by a timer that fires in a best-effort manner. If an iteration exceeds the timer
interval, the next iteration starts late, resulting in a lower frame rate.

We also conducted an experiment comparing the publisher’s two update
modes. The publisher can either send everything for each iteration, or calcu-
late a diff between the current window contents, and the window contents most
recently sent to subscribers (change detection). We measured the publisher’s
CPU load, bandwidth usage and frame rate at each subscriber.

Performing change detection was very costly. With one subscriber, the frame
rate was 7.13, and the publisher’s CPU load at 76.2%, transmitting 5.8 MB/s.
With 20 subscribers, the frame rate was only 3.7, and publisher CPU load was at
100.1%3 with bandwidth usage at 50 MB/s. In comparison, sending everything to
a single subscriber gave a frame rate of 28, with publisher CPU load at 42.5% and
bandwidth usage at 24.5 MB/s. To 20 subscribers, the publisher CPU load was
77%, transmitting 67.6 MB/s, and the frame rate was 4.1. We have performed
informal practical experiments with the multi-cursor implementation, testing it
with up to 8 simultaneous cursors.

5 Discussion

The experiments indicate that the impact on performance from adding shared
windows to a parallel application is low. The benchmark was run without load
balancing, neither on the system level nor the application level. For the Mandel-
brot computation, this results in a very uneven load distribution, which on many
nodes result in ample time for the window sharing system to execute in. This
may contribute to hiding additional overhead from the window sharing system.

The system shares windows by sharing their pixel representation. This is the
simplest way of sharing windows between hardware platforms and different win-
dow systems, and is the same approach as that taken by VNC [4]. The alter-
native to sharing pixels is to share drawing operations, like “fill rectangle” or
“draw line.” This approach is more challenging to make platform independent,
compared to the simple operation of copying a block of pixels and sending them
across the wire. As an example, drawing operations can save bandwidth by trans-
mitting the raw text rather than the pixels making up the text on a display.

The publisher running on Mac OS X can use two different strategies when
sending updates to windows. Since it doesn’t know when or which regions of a
window is updated, it can decide to either always send everything to everyone, or
compute a diff between what the subscriber already has, and the current contents
of the window. The trade-off is between publisher CPU load and publisher band-
width. Subscribers will also potentially have fewer updates to draw, resulting in
lower subscriber CPU load. Sending everything consumes more bandwidth, but
incurs a lower CPU load on the computer running the publisher, while perform-
ing change detection is very costly. In contrast, for the Mandelbrot application,
window contents are only sent when there are actual updates to the window. This

3 The publisher ran on the PowerMac, which has two CPUs.
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is possible since the window sharing code has been built directly into the Man-
delbrot application, allowing it to send updates only when the shared window is
actually updated.

Integrating the window sharing system with parallel applications requires that
the source code for the parallel application is available. This is not a major prob-
lem though, since the window sharing system only simplifies the task of pub-
lishing the windows. The application itself is responsible for filling that window
with meaningful content - be it a runtime visualization or performance monitor-
ing data. This will require further modifications to the application’s code.

6 Conclusion

This paper presents a system that shares windows created by parallel and desk-
top applications between two or more users. To further enhance collaboration,
a system supporting multiple cursors on a wall-sized, high-resolution display is
used to allow many users to manipulate shared windows simultaneously.

Parallel applications require modifications to their source code in order to share
windows and discover updates in them. For desktop applications, modifying their
source code is usually neither practical nor possible. Because of this, sharing desk-
top application windows is more costly, both in terms of CPU and network load,
as the system has to poll window contents in order to discover updates.

We have integrated the system with a parallel implementation of a solver for
the Mandelbrot fractal, and measured its impact on the application’s execution
time. We measured the performance of desktop application window sharing by
sharing a single window containing an animation with a varying number of users.
The windows were displayed on the tiled display wall. The multi-cursor system
was used with eight cursors.

We found that the addition of shared windows to the Mandelbrot application
only added about 1.4% to the application’s execution time. For this benchmark,
no load balancing was used, resulting in an uneven distribution of work be-
tween the different processes. This gives the window sharing system CPU time
to execute in that would otherwise remain unused, which combined with the
Mandelbrot application’s infrequent updates, explains the window sharing sys-
tem’s low impact on the application’s performance. A higher update frequency
would likely increase the window sharing system’s impact on execution time.

For desktop application windows, the number of updates received per second
by each subscriber went from 28 with one subscriber, to 1.6 with 56 subscribers.
In general, when the number of subscribers is doubled, the update frequency
seen by each subscriber is halved. For less than ten subscribers, CPU and net-
work are not the limiting resources. Instead, the scaling behaviour is caused
by the iteration- and timer-based approach used by the publisher. With many
subscribers, the limiting resource is the network.

Sharing windows and support for multiple cursors are promising for increas-
ing the flexibility of runtime visualization and monitoring of parallel applica-
tions, and for collaboration using desktop applications. More work remains to



Collaboration, Visualization and Monitoring Using Shared Windows 237

determine the window sharing system’s impact on these issues, and to better
characterize the system’s performance.

Acknowledgements. Thanks to Lars Ailo Bongo, Vera Göbel, Espen Skjelnes
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