
De-centralizing the VNC Model for Improved Performance on

Wall-Sized, High-Resolution Tiled Displays

Daniel Stødle
daniels@cs.uit.no

John Markus Bjørndalen

jmb@cs.uit.no

Otto J. Anshus

otto@cs.uit.no

Abstract

This paper presents changes to the Virtual Network Computing (VNC)

model to improve performance on wall-sized, high-resolution tiled displays.

VNC does not fully utilize data distributed to the tiles, noticeably reducing

interactive performance when panning images and moving windows. By

de-centralizing the VNC model, the VNC viewers can exchange pixels

amongst each other, improving performance. The VNC server changes

from individually servicing viewer requests, to servicing the viewers once

everyone has requested an update. The model is implemented, and its

performance documented through experiments. When panning images, the

number of pixels refreshed is increased three times or more, while reducing

the server’s bandwidth by 74% and CPU load by 35%. When moving

windows, the number of pixels refreshed is increased by a factor of 1.8, while

reducing the server’s bandwidth by 68% and CPU load by 19.7%. The paper

demonstrates how conceptually simple changes to VNC, while complex to

realize, can yield significant performance improvements.

1 Introduction

Figure 1: Weather forecasting on a tiled display

wall with 28 projectors behind the canvas, using

VNC to provide the desktop environment.

Using high-resolution, tiled display walls

for visualization and collaboration is be-

coming increasingly popular. The high

resolution and large physical size of dis-

play walls make them useful for visualiz-

ing data from many domains. Users often

need to run applications written for stan-

dard desktop environments on the display

wall, such as the weather forecasting appli-

cation shown in Figure 1. Virtual Network

Computing (VNC) [1], a remote desktop

solution, is one way of achieving this. It

is usually used to share regular-sized desk-

tops, but for display walls, VNC can also

be used to create a very high-resolution

desktop. In the latter case, the desktop is maintained by a VNC server, which transmits

This paper was presented at the NIK-2007 conference; see http://www.nik.no/.



tiles of the desktop to corresponding clients (VNC viewers) running on a display cluster.

Due to VNC’s centralized approach to rendering and distributing pixels, it does not scale

well to large display walls. With typical display walls ranging in resolution from 10 to

100 megapixels [2, 3] and beyond, a single complete refresh requires sending between 38

MB to 380 MB in total to the viewers.

This paper presents De-centralized VNC (DVNC). DVNC modifies the VNC model,

allowing viewers to exchange pixels when screen content moves, but is not otherwise

modified. Cases where this happens include panning large images, moving windows

on the desktop or scrolling in windows. Work is delegated to the viewers, letting the

server focus on sending new pixels rather than resending already transmitted pixels to the

viewers. When the viewers receive pixels from both the server and each other, the correct

ordering of display updates becomes important in order to preserve consistency of the

display.

DVNC was implemented by modifying an open-source version of VNC [4], and its

performance measured by comparing it to the original on a tiled display wall with a total

resolution of 7168x3072 pixels. As a result, we found interactive performance to be

significantly better when panning images and moving windows. The main contribution

is the modified VNC model, where viewers go from being passive receivers of pixels, to

become active participants in distributing pixels.

2 Related work

There has been much work on improving the performance and utility of VNC [1],

including new compression techniques [5, 6] and support for 3D acceleration [7]. This

paper is not focused on these aspects of VNC. DVNC instead aims at improving

performance when using VNC to create a desktop on tiled display walls, by delegating

work to viewers. In THINC [8], performance is improved compared to VNC and other

remote desktop solutions by efficiently encoding and transferring raw graphics operations

generated by applications. THINC is focused on thin-client usage, and is currently not

suitable for use in creating desktop environments for display walls as it can only export

desktops with the same resolution as the computer it is running on has.

Microsoft Remote Desktop and the X Window System [9] (X11) are two other ways of

accessing or creating desktops over the network. Both approaches use drawing operations

(“draw line”, “draw string”, and so on) to achieve good performance. The former is

limited to a maximum resolution of 4096x2048, and does not allow different regions to

be displayed by different viewers. Xdmx [10] can be used to enable X11 application

to run on a tiled display wall. Xdmx acts as a proxy to a set of X servers running on

the display cluster. This differs from DVNC in that no data is exchanged between the

different X servers on the display cluster to improve performance. DVNC uses a single X

server to render into a virtual framebuffer, which is then distributed to the tiles using the

VNC protocol.

SAGE [11] is a system for streaming high-resolution graphics from rendering or

storage clusters to one or several display walls. Pixel data is received by “SAGE

Receivers” and then displayed. While this can be used to display multiple VNC desktops

at once, no pixel data is exchanged between the different SAGE Receivers.



3 Model and design

When VNC is used on standard displays, a single viewer typically has access to the pixels

for the server’s entire desktop. On a tiled display wall, each viewer runs on its own

computer showing a small region of the server’s desktop, as shown in Figure 2 (a) and

(b). In the original VNC model, the server does all the work. The viewers do nothing

except receive and display pixels. In DVNC, this model is modified by letting the viewers

exchange pixels amongst each other for a certain class of update operations. The purpose

of this is to reduce the server’s load and improve end-user performance. The viewers go

from being passive receivers to being active slaves in a master-slave relationship to the

server. Figure 2 (c) illustrates this change.

Figure 2: The original VNC model for (a) a standard display,

(b) a tiled, 2x2 display wall. In the modified model (c), the

viewers exchange pixels with each other in addition to receiving

pixels from the server.

VNC uses the Remote

Framebuffer (RFB) protocol

[12] to send display updates

from the server to the view-

ers. Viewers request the area

they are interested in from

the server, which responds

with update operations for

that area. The RFB protocol

uses three operations to up-

date a region of the display:

Image Rect, Fill Rect and

Copy Rect. The Image Rect

operation contains a rectan-

gular set of pixels which is

drawn by the viewer at the lo-

cation indicated by the rect-

angle. The Fill Rect operation is used to fill a rectangle with a given color. The Image

and Fill Rect operations offer no obvious ways for distributing network load.

Figure 3: The Copy Rect operation as it is used for a single viewer for the entire remote desktop,

and its behaviour when used with multiple viewers each showing a region of the server’s desktop

on a tiled, high-resolution display.

The Copy Rect operation is used whenever an area of the screen is moved, but the

pixels inside the area remain unchanged, shown in Figure 3 (1) and (2). This is common

when moving windows, scrolling in documents or panning images. Since a Copy Rect

only takes 12 bytes to send regardless of the size of the area being updated, the Copy Rect



operation is important for reducing the server’s bandwidth usage. To make the best use

of it, the viewer must have access to all of the pixels being moved for the entire desktop.

On a tiled display, this is not the case, as each viewer only has the pixels covering its own

area of the display. Copy Rect operations that span the areas of more than one viewer

force the server to split the operation, resulting in a larger set of exposed areas, shown in

Figure 3 (A) and (B). This incurs additional load on the server, which DVNC alleviates

by letting the viewers themselves exchange the necessary data. Figure 4 illustrates this.

Figure 4: A Copy Rect operation spanning four

viewers. The darkened, grey area moves down

and to the right. Viewers 1, 2 and 3 transfer some

of their pixels to viewer 4. (Other pixel transfers

are not shown, such as from viewer 1 to viewer

2.) The arrows indicate direction of movement.

In the de-centralized VNC model, the

viewers receive updates not only from the

server, but also from each other. This

creates consistency issues, both for the

viewer’s own display, and for pixels sent

by the viewer to other viewers. For

instance, a viewer receiving one update

from the server and a second update from

a different viewer, needs to know which of

the two updates to apply first in order to

ensure a consistent display. In DVNC, the

consistency issues are solved by imposing

a total ordering on all updates sent by the

server to the viewers, and by ensuring that

all the viewers see the same Copy Rect

operations.

The viewers make independent deci-

sions about where to send pixel data based

on the Copy Rect operations they receive.

Pixel data is always pushed to other viewers. To avoid circular dependencies between dif-

ferent viewers, the Copy Rect operation is split into two phases: A Copy Rect pre-phase,

and a Copy Rect post-phase. During the pre-phase, the viewer determines which viewers

it should send pixels to, copying and sending data as necessary. During the post-phase, a

viewer applies updates from other viewers in the correct order.

4 Implementation

DVNC was implemented by modifying RealVNC’s free VNC distribution (available

under the GPL license), version 4. Both the VNC server and the VNC viewer

required modifications. There are many implementations of VNC, including TightVNC,

UltraVNC, and others. Since the modifications involve changing the model, they could

also have been implemented by modifying a different VNC implementation.

VNC server modifications

The VNC server was modified to ensure that all connected viewers see the same Copy

Rect operations in the same order. Instead of accumulating updates for each viewer, the

server accumulates the same set of updates for all viewers, sending them once all the

viewers have requested an update. The drawback to this approach is that the server can

provide updates no faster than the slowest viewer. When updates are sent, the Copy Rect

operation’s rectangle is no longer clipped to the area which the viewer requests from the

server, but sent regardless of whether the Copy Rect actually intersects with the viewer’s



area. The server continues to clip Fill and Image Rect operations to the area requested by

the viewer. A 4-byte, logical timestamp was added to the RFB protocol’s framebuffer start

message. The logical timestamp is incremented once for each group of update operations,

and is used by the viewers to match updates received from other viewers to the correct

Copy Rect operation. Finally, the server was modified to measure its load during the

various experiments.

VNC viewer modifications

The VNC viewer was modified to receive framebuffer updates from other viewers. A

separate thread is responsible for sending and receiving pixel data to and from other

viewers. This thread also handles the logic necessary to determine which pixels should be

sent and received, as well as the order in which updates are applied. Also, both the original

and modified viewers were changed to record various statistics used for the experiments.

To better overlap communication with computation, incoming update operations from

the server are queued. If the operation to be queued is a Copy Rect, its pre-phase is

executed before queueing it (in some cases, execution of the pre-phase may be delayed to

ensure consistency). The pre-phase copies data and sends it to other viewers, increasing

the chance that other viewers will have the data they need when they begin executing the

Copy Rect’s post-phase.

When the server signals that it is done sending updates, all the queued operations are

applied by the viewer. Applying a Copy Rect operation is done by executing its post-

phase. During the post-phase, the viewer scans its list of updates received from other

viewers, matching them to the current Copy Rect using the VNC server timestamp and

other data contained by the operation. If the viewer hasn’t received all the necessary data

from other viewers, it will block waiting for the remaining data to arrive.

The queueing strategy introduces a queueing overhead not present in the original

implementation. To minimize this overhead, the modified viewer avoids queueing when

possible. If the rectangle covered by the incoming operation does not overlap with the

rectangles of any queued operations, the operation can be applied immediately.

Determining where a viewer sends its pixels for a given Copy Rect operation is done

by examining the data given by each Copy Rect operation. A Copy Rect operation consists

of a source rectangle R=(x, y, width, height) and a delta point (dx, dy). The delta point

indicates where the pixels identified by the source rectangle should be moved, yielding a

destination rectangle. The viewer intersects the source rectangle with its own area. If the

intersection is non-empty, the destination rectangle is computed by offsetting the clipped

source rectangle by the operation’s delta point and intersecting the result with the viewer’s

area. If the source and destination rectangles have different sizes (indicating that part of

the destination rectangle falls outside the viewer’s area), the viewer will transmit some of

its data to other viewers.

When the viewer starts up, it is given the area of the VNC desktop that it should display

as part of its arguments. The viewer then connects to the server and to the all other viewers

by means of a multicast discovery mechanism. When a connection to another viewer is

established, the viewers exchange a handshake, before they can exchange framebuffer

updates. The handshake consists of five long integers: A magic number followed by the

area the viewer covers. All future messages consist of a four-byte field containing the

length of the message, followed by the actual message itself. These messages consist of

the VNC server timestamp, the rectangle and delta point from the Copy Rect operation,

followed by the pixels for the update. The pixels are currently not compressed.



5 Experiments

The performance of the original VNC and modified DVNC implementations is measured

using three metrics: Total number of pixels refreshed, total number of bytes sent from

the server to the viewers, and the server’s CPU load. A high pixel refresh count is better

than a low refresh count, as more pixels updated means better interactive performance.

The DVNC implementation is also expected to reduce bandwidth used by the server, and

reduce the server’s CPU load. This is because the modified model is based on distributing

load from the server to the viewers.

Hardware and software setup

The hardware used was (i) a display cluster with 28 nodes (Intel Pentium 4 EM64T, 3.2

GHz, 2 GB RAM, HyperThreading enabled, running the Rocks cluster distribution 4.0)

connected to 28 projectors (1024x768, arranged in a 7x4 matrix), (ii) switched, gigabit

Ethernet, (iii) a dual Intel Xeon 3.8 GHz with 8 GB RAM, and (iv) another Pentium

4 (same hardware as the nodes in the display cluster). The Xeon and the last Pentium

4 were used to run the server, and ran RedHat Enterprise Linux 4. The image viewer

used was “xloadimage” by Jim Frost. The event generator for the control experiments

used the XTestExtension to post input events to the server, and was custom-made for

these experiments. The VNC distribution was RealVNC version 4 [4], exporting a 16-bit

desktop.

Server and viewer instrumentation

The original and modified servers were instrumented to record their CPU load over the

duration of an experiment, recording both time spent at user level, and time spent on

behalf of the servers at kernel level. The servers recorded 10 samples per second, sending

performance data to a second computer on the same local network. The additional

network traffic generated by sending performance data is negligible at less than 500 bytes

per second.
Name Description

Total Pixels Total number of pixels re-

freshed by this viewer.

Server Bytes Total number of bytes re-

ceived by this viewer from

the server.

Viewer-

to-viewer

Bytes

Total number of bytes re-

ceived by this viewer from

other viewers.

Queuing

Overhead

Minimum, maximum and

average overhead caused by

queueing incoming opera-

tions.

Table 1: Statistics gathered from the viewers.

The original and modified viewers

were instrumented to record the statistics

outlined in Table 1. Each viewer makes

its own measurements. At the end of

each experiment, the number of pixels re-

freshed and number of bytes exchanged is

summed. The queueing overhead’s global

maximum and minimum values are deter-

mined, and the global queueing overhead

average is calculated by averaging the av-

erages from each viewer. The total number

of bytes sent between the viewers was also

recorded, but these data have not been used

to characterize performance in this paper.

Experiments and methodology

Two sets of trace experiments and a set of control experiments were conducted. The trace

experiments aim at measuring the performance for a user interacting with the desktop.

In particular, the answers to the following four questions were of interest: (i) How many



more pixels can the DVNC implementation refresh compared to VNC? (ii) How much

bandwidth does DVNC save? (iii) How does the DVNC changes affect the server’s load?

(iv) How big is the queuing overhead? The trace experiments play back two recorded user

traces, where a user either pans an image or moves a window (see Table 2). In the first set

of trace experiments, the server ran on the Xeon, and in the second set, the server ran on

the Pentium 4.

Trace Description

Image pan A user pans an image sized at

9372x9372 pixels. The visi-

ble portion of the image cov-

ers almost the entire display

wall, the rest of which is cov-

ered by the image viewer’s

window decorations. The

trace lasts for 255 seconds.

Window move A window sized at

2592x1944 pixels is moved

around on screen. The trace

lasts for 145 seconds.

Table 2: The traces used for measuring

performance.

The control experiments have two pur-

poses: (i) Get an objective view of the sys-

tem’s performance, and (ii) measure the

maximum performance gain in a situation

where the server’s possibility for using

Copy Rect operations is near maximized.

The image from the Image pan trace is

moved vertically up and down in a con-

trolled manner. The rate at which move-

ment occurs is varied for each experiment,

ranging from one to fifty times per second,

with each movement scrolling the picture

8 pixels up or down. An event generator

is used to move the image at the constant

rate defined by each experiment, with each

experiment lasting 30 seconds.

Where the trace experiments measure the system’s performance in a setting similar to

real-world use, the control experiments allow for external repeatability. Before running

either trace or control experiments, the server was restarted, and its desktop configured

to match the experiment’s starting point (open windows and window positions on the

desktop). Then the viewers were restarted, and the experiment was conducted, before

performance data was gathered.

A null-benchmark measured the overhead incurred by the changes to the VNC

protocol. The server displayed a static image, and the number of bytes required to refresh

the viewers was measured. The original sent a total of 85688.97 KB, while the modified

sent 85707.69 KB - an overhead of 0.02%.

Trace results

Figure 5: Left: Total number of pixels refreshed for each trace by the original and modified VNC

viewers. Right: Total number of bytes sent by the server to the viewers.

Figure 5 shows the total number of pixels refreshed by the original and modified

viewers as well as bytes sent from the server to the viewers for each trace. With the server

on the Pentium 4, the modified implementation refreshes 34.6 gigapixels (GPx) for the

Image pan trace, 3.29 times more than the original’s 10.5 GPx. For the Window move



trace, the modified implementation refreshes 1.83 as many pixels. The number of bytes

sent is reduced by 74% for the Image pan trace, and by 68% for the Window move trace.

On the Xeon, number of pixels refreshed increases from 6.5 to 18.2 GPx and 4.6 to 8.1

GPx for the two traces respectively. Interestingly, the Pentium 4 is able to refresh almost

twice as many pixels as the Xeon for the Image pan trace. The amount of data transferred

is approximately the same regardless of where the server runs.

 0

 20

 40

 60

 80

 100

 120

 0  50  100  150  200  250  300

C
P

U
 T

im
e

 (
s
)

Time (s)

Cumulative VNC server load for Image pan trace on Pentium 4

Orig. Total

Orig. Kernel

Orig. User

DVNC Total

DVNC Kernel

DVNC User

Original Total

Original Kernel

Original User

DVNC Total

DVNC Kernel

DVNC User

Figure 6: Cumulative server CPU load for the

Image pan trace on Pentium 4, with total, user

and kernel level load for both implementations.

Figure 6 shows the original and mod-

ified servers’ cumulative CPU load, mea-

sured in seconds, when running on the

Pentium 4 for the Image pan trace. The

X axis shows the running time of the trace,

and the Y axis shows the CPU time con-

sumed by the server. The DVNC server’s

load is reduced by 35% compared to the

original VNC server (from 106.6 to 69.3

CPU seconds). The biggest reduction hap-

pens at kernel level, where the load is re-

duced by 75%, while the difference in user

level load is only 4%. The reduction in

kernel level load correlates well with the

reduction in bandwidth used by the DVNC

server. For the window move trace, the reduction in CPU load is 19.7% (from 64.8 to

52.0 CPU seconds). The server load on the Xeon has similar characteristics.

Trace Min Avg Max

Image pan

(P4)

0.000 s 0.009 s 0.546 s

Window move

(P4)

0.000 s 0.008 s 0.467 s

Image pan

(Xeon)

0.000 s 0.011 s 0.582 s

Window move

(Xeon)

0.000 s 0.011 s 0.504 s

Table 3: The queueing overhead, measured

in seconds, for the traces on the Pentium 4

and the Xeon.

Table 3 shows the modified implemen-

tation’s queuing overhead. The maximum

queuing overhead is 0.56 seconds, which

means that an update operation received by

one of the viewers was queued for a little

over half a second before it was actually

drawn. The average queuing overhead is

between 0.008 and 0.011 seconds, and the

minimum overhead is 0.000 seconds.

Control experiment results

Figure 7 shows the number of pixels

refreshed by the viewers for the control

experiment. The measured values are compared to a target number of pixels that should

have been refreshed if sufficient resources to avoid all bottlenecks were available. The

target value is calculated by measuring the number of pixels refreshed when scrolling

the image vertically by 8 pixels, and multiplying that number with the duration of each

experiment and rate at which the image is moved.

The number of pixels refreshed increases linearly with the event generation rate.

At first, both implementations closely follow the target refresh count. The original

implementation reaches its maximum at an event rate of 26, while the modified

implementation keeps tracking the target up to 40 events per second. The original’s

performance goes down by 57.8% when the event generation rate is increased from 26

to 28. The DVNC performance goes down by only 6.6% when increasing the event

generation rate from 40 to 45. At an event rate of 50, DVNC refreshes 11.9 times as



many pixels as the original.

Figure 7: Total number of pixels refreshed for

the control experiment for the two implementa-

tions, as well as the target refresh count. Event

generation rates range from 1 to 50.

Figure 8 shows the server’s total, ker-

nel and user level load in percent for both

implementations. Initially, the CPU load

increases linearly for the implementations,

with the original’s load increasing almost

twice as fast as the modified’s load. At the

peak in load, close to 100%, the event rate

for the original and modified server is re-

spectively 26 and 40. This is also the rate

at which the two implementations peak in

number of pixels refreshed.

Figure 9 shows the total number of

bytes transferred from the server to the

viewers. The number of bytes transferred

increases linearly with the event rate, with

a slower growth for the modified implementation. The original implementation peaks at

1135 MB, while the modified implementation peaks at 375 MB. This corresponds to a

bandwidth use of 37.8 MB/s and 12.5 MB/s, respectively, neither of which is close to the

maximum transfer rate of gigabit Ethernet at about 90 MB/s. Interestingly, the bandwidth

used by the original implementation continues to climb even after having peaked both in

CPU load and number of pixels refreshed.

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60

C
P

U
 L

o
a

d
 (

P
e

rc
e

n
t)

Rate

VNC server load for control experiment

Orig. Total

Orig. Kernel
Orig. User

DVNC Total

DVNC Kernel

DVNC User

Original Total

Original Kernel

Original User

DVNC Total

DVNC Kernel

DVNC User

Figure 8: CPU load for the VNC server,

showing total, kernel, and user level load for both

the original and modified implementations in the

control experiment.

Figure 9: Total bytes sent from the servers

for the control experiment.

6 Discussion

The results from the trace experiments show that the DVNC implementation can refresh

more than three times as many pixels compared to the original. The control experiment

documents that DVNC can outperform the original by a factor of up to 11.9. For the case

where the server sends no Copy Rect operations - and hence no gain can be expected

from delegating work to the viewers - DVNC adds very little overhead; only 0.02% in the

null-benchmark. DVNC provides no performance benefit for content that is updated using



operations other than Copy Rect - typically video, animated or otherwise “fresh” content.

DVNC provides a significant performance increase for certain operations that the server

is able to translate into Copy Rect operations.

Trace experiments

The server spends less CPU time at kernel level since it sends less data, leaving more

resources for the server and other applications. The server’s user level load is not reduced

as much, since the server provides viewers with more frequent updates, while sending

less data.

The maximum queueing overhead was half a second, and can be observed as

occasional stutters during playback of the traces. Even though there is some queueing

overhead associated with keeping each viewer consistent, overall performance is still

much better than the original implementation.

The staircase effect in Figure 6 is caused by periods of lower user activity. When

the user is not moving the image or the window, fewer updates take place and the server

experiences low load. Typically, this occurs when the user repositions the cursor to drag

the image or move the window. This effect is not present in graphs depicting the CPU

load for the control experiments (not included in this paper).

Control experiments

DVNC’s performance compares even more favorably to the original in the control

experiments, than it did in the trace experiments. The reason for this is that the pay-off

from each Copy Rect generated in the control experiments is greater than it is in the trace

experiments. In the trace experiments, many Copy Rects move diagonally. Diagonal

movements cause the areas covered to be smaller, meaning that larger areas must be

refreshed by the server. New pixels must be sent by the server to refresh not only the top

or bottom edge, but also the right or left edge of a given area. Diagonal movements also

cause more complicated dependencies between the different viewers when they exchange

pixels. A vertical or horizontal Copy Rect operation only requires that a viewer sends its

pixels to one other viewer, while a diagonal Copy Rect can require a viewer to send pixels

to three different viewers.

The original implementation’s sudden drop in pixel refresh count (Figure 7) is not

caused by lack of network bandwidth, as the bandwidth used continues to increase even

after the drop in refreshed pixels (Figure 9). The drop is caused by the server having to

work harder to keep its own framebuffer updated, which delays updates to the viewers.

The delay makes each viewer accumulate a larger dirty region, requiring more bytes

to refresh. This behaviour also explains why the original starts spending more time at

kernel level when the drop in performance occurs, as the kernel is heavily involved in the

communication.

Server on Pentium 4 and Xeon

The performance measured by the trace experiments on the Pentium 4 and on the Xeon

were not as expected. The Pentium 4, with its older CPU architecture, performed better

than the newer Xeon. The server implements Copy Rect by moving memory from

one location to a different location in the server’s framebuffer. To investigate whether

memory bus speeds were the issue, the two computers’ processor-memory bandwidth

was measured using CacheBench [13]. The sustained read/modify/write bandwidth to



memory for the Pentium 4 was 3.78 GB/s, while the Xeon only managed 2.16 GB/s. This

is a factor of 1.75, which correlates well with the difference in refreshed pixels, 34 GPx

vs. 18 GPx, a factor of 1.88.

Lessons learned

The performance improvements achieved by DVNC is made possible by changing the

model at a number of different levels. From a model where the server does all work and

the viewers are passive receivers, the new model makes the viewers partially serve each

other, off-loading the server. The viewers, which previously needed no knowledge about

other viewers, now need to know about every other viewer in order to exchange pixels

with them. Each viewer makes its own decisions about where to send pixels, as opposed

to having the server handle this task.

Discovering that the server’s memory bandwidth is a bottleneck was surprising, given

that the pixels moments later must be moved over a “slow” gigabit Ethernet. This is

becase the server may have to move up to 80 MB of data before sending a Copy Rect

operation describing the movement, while the A Copy Rect operation itself only requires

12 bytes to transfer.

7 Conclusion

This paper has presented a modification to the VNC model that improves performance

when VNC is used to create the desktop environment for tiled display walls. The De-

centralized VNC (DVNC) system increases performance for tasks like navigating large

images and moving windows on the desktop. The main principle employed is to let the

VNC viewers exchange data amongst each other, freeing the VNC server from re-sending

already distributed pixel data.

The DVNC model has been implemented by modifying an open-source VNC

implementation, and its performance evaluated. A tiled 7x4 display wall with a total

resolution of 7168x3072 pixels was used for the experiments. The system’s performance

was measured through several user trace and control experiments, and compared to VNC

without modifications. The results show that end-user performance was significantly

improved. For panning large images, DVNC could refresh three to twelve times more

pixels on the display wall compared to the original implementation. These improvements

are expected to carry over to other cases where screen content moves, but otherwise

remains unchanged, such as scrolling in documents.

The performance improvements are a result of distributing work between the server

and viewers. This lets server-side processing overlap with viewer-side pixel distribution.

In addition, the bandwidth required for the server to keep the viewers updated is reduced.

Consequently, the server can spend more cycles keeping its framebuffer updated, as well

as leaving more cycles for other applications.

8 Acknowledgements

The authors wish Lars A. Bongo and Espen S. Johnsen. This work has been supported by

the Norwegian Research Council, projects No. 159936/V30, SHARE - A Distributed

Shared Virtual Desktop for Simple, Scalable and Robust Resource Sharing across

Computer, Storage and Display Devices, and No. 155550/420 - Display Wall with

Compute Cluster.



References

[1] Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood, and Andy Hopper.

Virtual Network Computing. IEEE Internet Computing, 2(1):33–38, 1998.

[2] Kai Li, Han Chen, Yuqun Chen, Douglas W. Clark, Perry Cook, Stefanos

Damianakis, Georg Essl, Adam Finkelstein, Thomas Funkhouser, Timothy Housel,

Allison Klein, Zhiyan Liu, Emil Praun, Rudrajit Samanta, Ben Shedd, Jaswinder Pal

Singh, George Tzanetakis, and Jiannan Zheng. Building and Using A Scalable

Display Wall System. IEEE Comput. Graph. Appl., 20(4):29–37, 2000.

[3] Bram Stolk and Paul Wielinga. Building a 100 Mpixel graphics device for the

OptIPuter. Future Gener. Comput. Syst., 22(8):972–975, 2006.

[4] RealVNC, Ltd. VNC for Unix 4.0. http://www.realvnc.com/.

[5] Lars Ailo Bongo, Grant Wallace, Tore Larsen, Kai Li, and Olga Troyanskaya.

Systems support for remote visualization of genomics applications over wide area

networks. In Proc. of GCCB’06. LNBI 4360, 2006.

[6] Tony Lin, Pengwei Hao, Chao Xu, and Ju-Fu Feng. Hybrid image coding for real-

time computer screen video transmission. Januar 2004. Visual Communications and

Image Processing (VCIP) 2004, part of the IS&T/SPIE Symposium on Electronic

Imaging 2004.

[7] dcommander. VirtualGL. http://www.virtualgl.org.

[8] Ricardo A. Baratto, Leonard N. Kim, and Jason Nieh. THINC: a virtual display

architecture for thin-client computing. In SOSP ’05: Proceedings of the twentieth

ACM symposium on Operating systems principles, pages 277–290, New York, NY,

USA, 2005. ACM Press.

[9] Robert W. Scheifler and Jim Gettys. The X window system. ACM Trans. Graph.,

5(2):79–109, 1986.

[10] R. E. Faith and K. E. Martin. Xdmx: Distributed, multi-head X.

http://dmx.sourceforge.net/.

[11] Byungil Jeong, Luc Renambot, Ratko Jagodic, Rajvikram Singh, Julieta Aguilera,

Andrew Johnson, and Jason Leigh. High-Performance Dynamic Graphics Streaming

for Scalable Adaptive Graphics Environment. SuperComputing 2006, 11.-17.

November 2006.

[12] Tristan Richardson. The RFB Protocol, version 3.8.

[13] Philip J. Mucci. Low-level characterization benchmarks. Available from

http://icl.cs.utk.edu/projects/llcbench/index.html.


