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A typical commodity camera rarely supports selecting a region of interest to reduce bandwidth,
and depending on the extent of image processing, a single CPU may not be sufficient to process
data from the camera. Further, such cameras often lack support for synchronized inter-camera
image capture, making it difficult to relate images from different cameras. This paper presents
a scalable, dedicated parallel camera system for detecting objects in front of a wall-sized, high-
resolution, tiled display. The system determines the positions of detected objects, and uses them
to interact with applications. Since a single camera can saturate either the bus or CPU, depend-
ing on its characteristics and the image processing complexity, the system supports configuring
the number of cameras per computer according to bandwidth and processing needs. To mini-
mize image processing latency, the system focuses only on detecting where objects are, rather
than what they are, thus reducing the problem’s complexity. To overcome the lack of synchro-
nized cameras, short periods of waiting are used. An experimental study using 16 cameras has
shown that the system achieves acceptable latency for applications such as 3D games.

1 Introduction

Figure 1. Using the system.

This paper reports on lessons learned us-
ing a cluster of cameras to detect the po-
sition of objects in front of a wall-sized,
high-resolution, tiled display. The sys-
tem is used to support multi-user touch-
freea interaction with applications run-
ning on a 220-inch 7x4 tiles, 7168x3072
pixels resolution display wall (Fig. 1).
This requires that the system can accu-
rately and with low latency determine
the positions of fingers, hands, arms and
other objects in front of the wall. To
achieve this, a consistent and synchro-
nized set of position data from each camera is needed.

A grayscale camera producing images at a rate of 30 frames per second with a resolu-
tion of 640x480 pixels requires a bandwidth of about 8.78 megabytes/second. A FireWire
400 bus can accommodate at most three cameras producing data at this rate; higher-
resolution or higher-framerate cameras further decrease this bound. To support more cam-
eras, additional FireWire buses can be used on a single computer. Scalability may now

aAs the display wall’s canvas is not rigid, users must be able to interact with the display wall without actually
touching it - thus the term “touch-free.”
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be limited by the CPU, either due to image processing complexity or deadlines on when
results are needed. Finally, most commodity cameras have no support for hardware- or
software-based inter-camera synchronization. This limits the accuracy of object position-
ing, as it reduces the system’s ability to relate images captured from different cameras to
each other.

This paper presents a parallel system for processing streaming video from several cam-
eras. The system architecture comprises four layers: (i) Camera and image processing,
(ii) object-position processing, (iii) event distribution, and (iv) end-application use of po-
sition data. The first layer uses 16 cameras connected pairwise to 8 computers. Each
computer processes images from two cameras, locating objects and determining their one-
dimensional position. When three or more cameras in the first layer see the same object,
the second layer can determine the object’s 2D position using triangulation. The third layer
distributes position data between the other three layers. The fourth layer is comprised of
applications using the position data for interaction. An experimental study has shown that
the system achieves acceptable latency for common applications like the 3D games Quake
3 Arena and Homeworld (see Section 5 and Ref. 1).

The main contributions of this paper are the lessons learned from building and using
the system, including: (i) The flexibility of the system architecture allows configuring
available camera and processing resources to accommodate end-applications’ needs, (ii) by
reducing the complexity of image processing from identifying what objects are to identify
where they are, processing is reduced, and (iii) despite the lack of synchronized cameras,
useful results may still be obtained by introducing short periods of waiting.

2 Related Work

There exists much work on multi-camera systems. In Ref. 2, the authors demonstrate how
a 100-camera array is used to capture very high-resolution video at 3800x2000 pixels at
30 FPS, or high-speed video with 640x480 pixels at 1560 FPS. Their implementation uses
custom circuit boards to communicate with the FireWire cameras and relies on hardware
synchronization of cameras, while the system presented in this paper is exclusively based
on use of commodity components; cameras without support for synchronization and no use
of custom hardware. In Ref. 3, the authors show how displays may be synchronized using
an external synchronization source combined with software adjustment of display timings
(software genlocking). Their use of a hardware synchronization signal precludes applying
their technique to synchronize commodity camera capture.

Other work has used many low-resolution cameras to generate a 3D reconstruction
of objects, either for collaborative applications4 or for creating 3D models. Our system
does not attempt to generate high-resolution video or imagery, or reconstruct 3D objects.
Instead, the goal is to use a cluster of cameras to determine the 2D position of objects in
a plane parallel to the display wall. Previous work reports on different ways of achieving
this. In Ref. 5, the author combines internal reflection of infrared light with a camera
mounted behind a (rigid) canvas to support multi-touch interaction. Our system differs in
that it doesn’t require users to actually touch the canvas in order to interact, and in the
use of a parallel architecture for capturing and processing images. In Ref. 6, a set of
cameras with on-board image processing is mounted in the corners of a large display, and
used to detect multiple points of contact. Rather than build custom cameras, our system
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uses commodity cameras mounted on the floor in front of the approximately 6 meter wide
display wall, and performs all processing on a compute cluster.

3 Design

Figure 2. The system architecture.

The system architecture is comprised of four layers,
as detailed in the introduction and shown in Fig. 2.
The camera and image processing layer captures and
processes images from cameras used by the system.
To allow for many cameras to be used simultaneously
as well as flexibility in image processing complexity,
this layer is designed to run in parallel. The layer produces 1D positions and radii for
detected objects in each image for each camera. An object’s 1D position is defined as the
centre of a detected object along the horizontal axis of a captured image (the centner of the
finger in Fig. 4), and its radius defined as half the width (in pixels) of the detected object.
The object position processing layer combines the position data from each computer in the
image processing layer using triangulation, to determine the each object’s 2D position.

Figure 3. The camera and image processing layer de-
sign. The layer can operate in parallel with any number
of cameras. Communication happens between each par-
ticipant and its immediate neighbours.

The camera and image processing
layer consists of several steps: (i) Im-
age capture, (ii) cropping, (iii) back-
ground subtraction, (iv) thresholding and
(v) communication, shown in Fig. 3.
When the layer first starts up, it stores the
current image from the camera it works
with to a buffer. This image will be re-
ferred to as the background. As new im-
ages are captured, a horizontal region of

interest (ROI) is isolated, before the pixel values in the ROI are subtracted from corre-
sponding pixels in the background image. If the absolute difference between a pixel in the
current and in the background image is beyond a given threshold, an object is detected at
the position of the given pixel in the image. The ROI is determined dynamically when each
camera starts capturing images, by identifying the two brightest, horizontal regions in the
imageb.

Figure 4 shows an example of how a single image from a single camera is processed.
The two horizontal lines (1) indicate two regions of interest in the image. A finger extends
from the hand visible in the image, intersecting both ROIs. The background (2) is sub-
tracted from the current image (3), resulting in (4), before the thresholding step is applied,
yielding (5). Continuous regions of white indicate where objects have been found in the
image.

To account for changes in lighting, the background is updated when too many objects
are detected in a single frame from a given camera. An earlier implementation updated the
background continuously by merging it with the current image. This did not work well, as
users often point at the same location for longer periods of time (on the order of several

bThe system makes use of a set of “Christmas lights” running along the ceiling, directly above the cameras, in
order to create high contrast with intersecting objects.
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seconds). The result was “ghost” objects appearing when the user eventually moved his
hand.

Figure 4. A sample image being processed
by the image processing layer. The camera
looks directly at the ceiling.

When all objects in the image have been
found, the communication step begins. First, each
participant sends the number of objects it has de-
tected on the left- and right-hand side of the im-
age to the neighbours on its left and right. The
participant receives data from its neighbours, but
to avoid introducing additional latency, the partic-
ipant will use values that are up to 66 ms oldc. The
received values are used to determine if the par-
ticipant’s results coincide with those of its neigh-
bours. If the number of objects it has detected for
the left or right side of the image is identical to
the number of objects a neighbour has detected
for the same side, no further processing is done.
However, if the participant has detected fewer ob-
jects than its neighbour, it will re-perform the im-
age processing sequence with a lowered thresh-
old, in an attempt at discovering objects lost due

to noise in the captured image. Similarly, if it detects more objects than a neighbour, the
image processing sequence is re-performed with a raised threshold. Once this is done, the
final 1D positions and radii are sent to the object position processing layer using the event
distribution layer.

Figure 5. Line segments from each camera
and passing through each object are gener-
ated. Each line segment is intersected with
every other segment. At least three cameras
are required to position an object, as using
only two cameras results in many false posi-
tives.

The object position layer receives 1D posi-
tions for located objects from the image process-
ing layer, and uses the positions to triangulate
their positions. In order to do this successfully, at
least three 1D positions from three different cam-
eras are required, as shown in Fig. 5; any less, and
false positives occur when multiple objects are
visible. The triangulation is performed by com-
puting intersections between lines projecting from
the cameras and up, at an angle determined by the
1D positions. An object’s position in 2D is suc-
cessfully identified when two or more points of
intersection from different cameras lie sufficiently
close to each other. The final 2D position is com-
puted as the average of the X and Y components of the 2D intersection points.

4 Implementation

The system is comprised of 16 Unibrain Fire-i cameras, connected in pairs to a cluster of
8 Mac minis. In addition, a display cluster of 28 computers, each driving one projector at
cThis is a tradeoff between system latency, and object detection accuracy. Data that is 66 ms = two frames old
may still contain the correct number of (current) objects.
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1024x768, is used to provide the graphics capabilities of the display wall, and a MacBook
Pro is used to perform object position processing using data from the 8 Mac minis.

The cameras use IEEE-1394 (FireWire) to communicate with the Mac minis, and cap-
ture 640x480 grayscale (8-bit) images at 30 frames per second (FPS). They are mounted
along the floor and spaced 32 cm apart, as shown in Fig. 6. The cameras do not support ex-
ternal or software-based triggers to synchronize the image capture of multiple cameras, not
even when they are on the same FireWire bus. This means that two cameras may capture
images spaced in time as far as 33 ms apart (the time between two frames at 30 FPS.).

Figure 6. The image shows 12 of the 16 cam-
eras mounted along the floor and looking at
the ceiling.

The Mac minis are interconnected using Gi-
gabit Ethernet. Each Mac mini captures and pro-
cesses images from the two cameras it is con-
nected to independently of the others, and runs
a custom application for performing image cap-
ture and processing. This application is written
in Objective-C, and uses libdc13947 to commu-
nicate with the cameras. Each camera is handled
by a separate thread within the application, where
each thread corresponds to one participant in the
camera and image processing layer. Once a frame
has been analyzed, the 1D positions and radii of
any detected objects are sent to the the object po-
sition processing layer.

The object position layer runs a loop operating at the same rate as the cameras, and
uses the 1D object positions it receives to triangulate the positions of potential objects. To
handle the lack of synchronized cameras, the object positioning software waits for up to
33 ms to receive (possibly empty) sets of object positions from all participating cameras.
For the case when a camera has not detected an object, it will notify the object positioning
layer of this for the first “no-detect” event only.

To triangulate the positions of objects, the cameras are placed in a coordinate system
where cameras are spaced 1 unit apart (1 unit corresponds to 32 cm). For each camera,
line segments starting at the camera’s position and passing through the centre of each
detected object are generated (Fig. 5). The lines are then intersected with all lines from
the two cameras to the current camera’s left and right. The resulting intersection points are
compared, and points that are sufficiently close result in an object being identified. The
identified objects’ 2D positions and radii are then sent to end-user applications. It is each
end-user application’s responsibility to interpret the events to allow user interaction.

5 Evaluation

We have evaluated the system by measuring the latency incurred by the system’s different
layers. In particular, we measure the latency for the following components: (i) Camera
capture, (ii) image processing, (iii) event distribution, and (iv) object position processing.

To measure camera capture latency, one camera was connected to a computer and
pointed at the computer’s display. A custom application fills the computer’s display with
black, and then starts capturing images from the camera. At one-second intervals, the dis-
play is filled with white, and a timer is started. When the difference between average pixel
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values from a 20x20 pixel square in the centre of the image in the previous and the current
frame exceeds 150 (because the image goes from being black to being white), the timer is
stopped, yielding the camera latency. The experiment was conducted on a Mac mini (1.66
GHz Intel Core Duo, 512 MB RAM) running Mac OS X 10.4.9 and a workstation (Intel
Pentium 4 3.0 GHz, 2 GB RAM, HyperThreading enabled) running Ubuntu Linux 6.10 to
investigate potential differences in latency caused by the operating system or hardware.

The image processing and object position processing latencies were measured by in-
strumenting the code that performs the two tasks and measure the execution time of 1000
iterations. The event layer’s latency was measured using a ping-pong style benchmark,
determining the round-trip time for one event sent back and forth. The resulting round-trip
time was divided by 2 to find the one-way latency.

Cam. capture Image proc. Event distr. Object pos. Sum
Samples 923 (852) 1000 1000 1000 -
Average 81 ms (93 ms) 1.16 ms 1.9 ms 31 ms 115 ms
Std. dev. 10 ms (9 ms) 0.11 ms 0.02 ms 10 ms -
Minimum 58 ms (72 ms) 0.97 ms 1.6 ms 0.008 ms 62.7 ms
Maximum 104 ms (114 ms) 3.3 ms 3.8 ms 139 ms 250.1 ms

Table 1. Results from the latency experiments. Results for camera capture latency in parentheses are from run-
ning the experiment on the Linux workstation.

Table 1 shows the results from the experiments. The majority of total system latency of
115 ms is due to the cameras, with about 10 ms separating the measured latency on Mac OS
X and Linux. The next biggest contributor to latency is object position processing (object
pos.), which incurs an average latency of 31 ms, which is close to the rate at which the
cameras deliver data (every 33 ms). Image processing in the system does not incur much
latency. Event distribution (only counted once in the table, but generally incurred twice;
once for sending events from the image processing layer to the object position layer, and
then once more for sending events from the object position layer to end-user applications)
incurs a negligible latency.

6 Discussion

The lack of synchronized cameras is the main limiting factor for accuracy in the system.
As two cameras can capture images taken as much as 33 ms apart, the accuracy of the
triangulation is significantly affected when the object is moving. The effect is further
compounded because three cameras are required to accurately position an object. Filtering
can reduce the impact of the uncertainty in position, but at the cost of higher latency.
The object position processing layer already introduces up to 33 ms of latency to receive
updated position data from all cameras. Although latency could be reduced by not waiting
for all cameras, this has the effect of reducing the triangulation accuracy and the rate at
which object positions are correctly triangulated drops.

Without synchronized cameras, the question of the system’s accuracy can be raised.
How fast can an object move while still being accurately positioned? Let p and r be the
centre of an object O and its radius, respectively. Since the system uses only the horizontal
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axis to position objects, position and movement of an object are implicitly assumed to be
horizontald.

We observe that a position x of the object detected by a camera can be considered ac-
curate as long as x lies within [p− r, p+ r]. Therefore, the position of a moving object can
be detected accurately if there exists a common position x∗ that satisfies the accuracy re-
quirement for three images taken by three adjacent cameras during the interval t = 33mse.
Let p′ > p be the new horizontal position of the object’s centre due to the object movement
during the interval t. The common position x∗ must satisfy x∗ ≤ p + r and x∗ ≥ p′ − r.
Such a common position exists if p′ − r ≤ p + r or p′ − p ≤ 2r. That means the system
can detect an object’s position accurately if the object does not move longer than 2r - its
diameter - during the interval t.

For instance, assume that the object diameter is 1 cm (e.g. the size of the index-finger).
In this case, the object’s position can be accurately determined if the object moves at a
speed less than 1cm

33ms = 0.3m/s. Higher framerates can increase this bound, since the
maximum delay between two cameras capturing an image will decrease. Doubling the
framerate makes the maximum delay go down from 33 ms to 16 ms, and also reduce
the object position processing latency. Other limiting factors are the number of cameras
detecting the same object, the resolution of the cameras, the speed of the objects, the
camera shutter speed, and the accuracy of the image processing layer.

The total system latency of 115 ms is sufficiently low to support playing two games
(Quake 3 Arena and Homeworld), as we show in Ref. 1. In that paper, the camera latency
was measured to be 102 ms, 21 ms more than reported in this paper. We speculate that the
difference is due to a newer OS release in between the first set of results and the results
presented in this paperf . The results from the Linux workstation show that the operating
system or hardware architecture has an impact on the latency from the time at which a
camera captures an image, until that image can be processed.

7 Conclusion and lessons learned

We have presented a scalable, dedicated parallel system using a camera cluster to detect and
locate objects in front of a display wall. The bottlenecks in such a system can range from
the bandwidth required by multiple cameras attached to a single bus and CPU requirements
to process images, to deadlines on when results from image processing must be available.
Due to our system’s parallel architecture, the system can scale both in terms of processing
and number of cameras. We currently use two cameras per computer, but with either more
cameras, higher-resolution cameras or cameras with higher framerates, the system can be
scaled by adding more computers.

Processing images can be CPU-intensive. To avoid image processing incurring too
much latency, we reduce the complexity of it by focusing on only detecting that an object
is present in an image, rather than determining exactly what the object is. This means that
the image processing done by our system can be done quickly, resulting in very low image
processing latencies (about 1 ms).

dVertical movement translates to slower shifts in the detected, horizontal position of objects.
eThe maximum delay between two images taken by two different cameras.
f The initial results were gathered on Mac OS X 10.4.8, while the new results are from 10.4.9.
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Another challenge in systems using cameras to detect and position objects is relating
images from different cameras to each other. High-end cameras can resolve this issue by
providing support for either software- or hardware-based synchronization. The commodity
cameras used by our system supports neither. Our system resolves this by waiting for data
from all cameras currently detecting objects, resulting in up to 33 ms of added latency. This
still does not solve the problem of cameras capturing images at different points in time -
however, it is better than not detecting objects at all because data from related cameras is
processed in alternating rounds.

We have used the system for interacting with different applications on the display wall.
This includes controlling the two games Quake 3 Arena and Homeworld1, and control a
custom whiteboard-style application with functionality for creating, resizing and moving
simple geometric objects as well as drawing free-hand paths. The system works well for
tasks that do not require higher levels of accuracy than our system can deliver, despite the
intrinsic lack of synchronization between the cameras.
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