The 22 Megapixel Laptop

Daniel Stgdle*

John Markus Bjgrndalen’

Otto J. Anshus?

Department of Computer Science
University of Tromsg, Norway

Figure 1: (a) Configuring virtual displays to match a 28-tile display wall. (b) Extending a display to a portable device. (c) Using the 22
megapixel laptop. (d) One laptop extended with both a display wall and a portable device, for a total display area of 22 megapixels.

Abstract

Displays are everywhere. To utilize them efficiently, we introduce
the notion of the Network Accessible Display (NAD). A user can
use displays on nearby computers as if they were physically con-
nected to his computer, including displays on handheld devices and
tiled display walls. We present a system adhering to the NAD-
model, and demonstrate it by extending a laptop with up to 30
NADs with an area of 22 MPixels connected using both a wireless
network and gigabit Ethernet. The system can support one display
at 25 Hz and 30 displays at 1 Hz. Even with a refresh rate of only 1
Hz, the system remains useful for displaying relativly static content.

CR Categories: 1.3.2 [Computer Graphics]: Graphics Systems—
Distributed/network graphics; 1.3.4 [Computer Graphics]: Graphics
Utilities—Virtual device interfaces;

Keywords: Network Accessible Display, display wall

1 Introduction

The rapid progress in development of computer-related technolo-
gies has resulted in a commoditization of computers, storage, dis-
plays and other types of hardware. This development has given
rise to approaches for building larger systems of cheap compo-
nents, including hard disk RAIDs, Beowulf/NoW-style computer
clusters and tiled displays. As this development continues, displays
with processing power can be used as Network Accessible Displays
(NAD:s), offering display services to nearby networked computers.

*e-mail: daniels@cs.uit.no
fe-mail: jmb@cs.uit.no
te-mail: otto@cs.uit.no

Copyright © 2007 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions @acm.org.

EDT 2007, San Diego, Califomia, August 04, 2007.

© 2007 ACM 978-1-59593-669-1/07/0008 $5.00

We have built a software system enabling a desktop computer or
laptop to utilize tens of displays as if they were directly connected
to the computer.

Laptops can typically use both their built-in display and an external
display. High-end workstations may be equipped with one or two
quad-head graphic cards, capable of supporting up to eight displays
in total. Wall-sized, high-resolution, tiled display walls have a pixel
area of anywhere between 10 megapixels and 100 megapixels [Li
et al. 2000; Stolk and Wielinga 2006], and are built using clusters of
computers with displays or projectors. These approaches are lack-
ing in several ways: (i) A laptop can only support one additional
display, (ii) a workstation supporting eight displays is expensive,
(iii) the number of supported displays is fixed, and (iv) using avail-
able, nearby displays from a laptop or workstation is impractical.
Finally, a variety of “portable displays” - from watches, to mobile
phones, PDAs and tablet computers - are not easily used as ex-
tended displays as there is no way of connecting them to computers
using regular display cables. An increasing number support net-
working, however, potentially enabling them to act as NADs.

Workstation with display

¢ The laptop is extended with
PASERY several virtual displays, which
W .
are shown on nearby display
resources

Figure 2: Example of a laptop extending its local display to utilize
the high resolution made available by a tiled display wall, as well
as the display resources offered by a workstation and a portable
device.

Software like ZoneScreen, MaxiVista and Screen Recycler' lets

Thttp://www.zoneos.com/zonescreen.htm, http://www.maxivista.com

users extend their local desktops to a single other display. These
products not only share the user’s local display, but extends it, es-
sentially making a remote display appear as a secondary local dis-
play. MaxiVista can support up to three additional displays, with
a resolution up to 4800x2400 pixels. These solutions are lacking
in (i) their ability to scale to many displays, (ii) no awareness of
the physical arrangement of available display resources, and (iii)
limited display resolution.

The above applications use remote desktop software, like Vir-
tual Network Computing (VNC) [Richardson et al. 1998], THINC
[Baratto et al. 2005] and Microsoft Remote Desktop, to transfer an
extended desktop’s pixels to a remote host. VNC shares displays by
sending the shared display’s pixels to clients, while in THINC bet-
ter performance is achieved by more efficiently coding the drawing
operations used to generate pixels. Another way of sharing display
contents is to transmit only drawing operations (“draw string”, “fill
rectangle”, etc.) as used in Microsoft Remote Desktop and the X
Window System [Scheifler and Gettys 1986]. Our system makes
use of a custom component similar to VNC, but with support for
sharing several extended displays.

To support the model of NADs, the system creates virtual displays
and shows them on displays ranging from portable displays to tiled
display walls. The system extends the local desktop of a laptop
running Mac OS X with up to 30 additional, virtual displays of ar-
bitrary resolution?. The system then discovers nearby NADs and
configures the virtual displays to utilize the available display re-
sources. Our experimental testbed consists of a display wall com-
prised of 7x4 tiles for a total resolution of 7168x3072 pixels, several
workstations and a Nokia N80O “internet tablet” acting as a portable
display with a resolution of 800x480. Figure 2 illustrates this setup.

Our main contribution with this paper is the development of the
Network Accessible Display model, and in particular: (i) a scal-
able display sharing model and implementation based on virtual
displays, (ii) dynamic mapping of virtual displays to match avail-
able display resources, (iii) a system that will fit both the traditional
view of displays connected directly to computers, and our vision
of the display of the future - the NAD, and (iv) an evaluation of
system’s performance.

2 Design

The NAD system we developed consists of a number of distinct
components: (i) A display service running on computers whose
displays we wish to utilize, (ii) a GUI frontend, (iii) a VNC-like
display sharing daemon and (iv) a kernel extension to create and
maintain a set of virtual displays. Figure 3 illustrates the design.

Any computer wishing to provide its display as a NAD, runs a dis-
play service. The display service maintains properties related to
the display(s) on the computer it runs’, and exposes them to clients
through a network-based discovery mechanism.

The GUI frontend runs on computers that want to utilize NADs. It
discovers nearby display services and queries their properties. Cur-
rently available displays and their relative locations are presented to
the user, before the user selects the displays he wishes to use. The
frontend then configures the virtual displays and tells the daemon
to push screen contents to the selected display services.

The display sharing daemon accepts commands from the GUI fron-
tend. It sends the contents of the virtual displays to display services

and http://www.screenrecycler.com.

2Limited only by available memory; the system has been tested with
resolutions up to 16384x6144.

3Bit depth, resolution, location and more.

| o + 1. Discover
g ! NADs

g GUI Frontend e Ry |
2 \\‘:\F Display | !
| g Uiz 1| service !
! ‘3 . S |
V> Mac OS X \ ! tTTIIIIiT -
! ‘a Window Server Userspace ™~ ! | Display |,
' E VFB Kernel MacOSX| | s.Push || service [}
1 O Extension Kernel | | display *--------- I
) o | contents c :
l " Virtial : omputers
i clidyi | providing

! displa
| Computer utilizing NADs : resozrc)és
1

Figure 3: The system design. Display services running on a set
of computers are discovered by the GUI frontend, which proceeds
to configure the number, resolution and arrangement of the virtual
displays. It then instructs the display sharing daemon (vfbd) to push
each display’s contents to its associated display service.

as raw pixel data. The first update consists of all pixels for a given
virtual display, while further updates consist of pixels from areas
that have changed on the virtual display (incremental updates).

The kernel extension creates a set of virtual displays when the com-
puter boots. The virtual displays appear to the rest of the operating
system as real, physically connected displays, but are in reality just
a set of memory buffers. The GUI frontend communicates with the
kernel extension to configure the number of virtual displays, and
uses the window server to configure their resolution, bit depth and
arrangement in relation to each other.

3 Implementation

The display service was implemented in C using SDL*, and BSD
sockets for network communication. It currently runs on Linux and
Mac OS X. On startup, the display service is configured with the
properties for the display resources it should provide. For a regular
workstation with a single display, the properties consist of the lo-
cal display’s resolution and bit depth, as well as name and location.
For display services running on tiled display walls, the configura-
tion also includes information about the display wall, including the
service’s location in the grid of display tiles.

The GUI frontend was implemented in Objective-C using Cocoa on
Mac OS X. It uses the CGDirectDisplay APIs in Mac OS X to con-
figure virtual displays, including resolution and arrangement. The
frontend uses property details from each display service when con-
figuring the resolution and arrangement of virtual displays. Groups
of display services that belong together, such as those running on a
display wall, are presented together by the frontend, and not mixed
with other “free-standing” displays.

The display sharing daemon uses the CGRemoteOperation APIs
exported by Mac OS X’ window server to access the raw pixels of
the virtual displays. These APIs are also used to receive information
about areas of the virtual displays where the pixels have changed,
supporting incremental updates. The daemon performs run-length
encoding of the pixels before sending them to connected display
services, in order to reduce bandwidth usage. The daemon receives
the network address for a display service from the frontend, then
connects to the service and provides it with details about the vir-
tual display. The service then starts accepting pixel data from the
daemon.

4Simple Direct-Media Layer, a popular cross-platform library often used
to develop games; http://www.libsdl.org/

Kernel Userspace

1. Master matches on IOResources, VFB le---4 VFB
and is loaded by the kernel at boot. nub
/ I I ™
| BRecnireae | VFB Number Number Window
IOResources —»| of virtual of virtual
(bt | master \ displays displays Server
' : o
2. Master creates a number of VFB
nubs, depending on the number | nup [€~ "7 VFB
of virtual displays are required

3. For each nub, a single VFB
instance is matched,
instantiating a new virtual
display.

Figure 4: The kernel extension design. The VFB master class is
loaded at boot by the kernel, by matching on the class IOResources.
It instantiates a number of VFB nubs. These nubs cause the kernel
to start the matching procedure, and instantiate one instance of the
VFB class for each nub. The virtual displays are then used by the
window server when it starts up.

The kernel extension, implemented in C++, consists of three
classes: VFB (virtual framebuffer) master, VFB nub and VFB, as
shown in Figure 4. The master accepts requests from userspace to
configure properties of the virtual displays. In particular, it enables
the GUI frontend to enable and disable virtual displays, without
going through the window server’. The purpose of the nub is to
provide an endpoint for Mac OS X’ IOKit driver system to match
and incorporate VFB instances into the kernel. When a nub is in-
stantiated, it registers a service with IOKit. The VFB class matches
on this service, making IOKit instantiate one instance of VFB for
each nub created by the master.

The VFB class is a subclass of the IOKit class “IOFramebuffer.”
When it is instantiated, it allocates memory for a framebuffer of
some pre-determined resolution (this can vary from instance to in-
stance depending on configuration), before exposing its available
resolutions and bit depths to the window server.

4 Evaluation

We document the performance of the system for different numbers
of virtual displays. The hardware used was (i) a display cluster with
28 nodes (Intel Pentium 4 EM64T, 3.2 GHz, 2 GB RAM, Hyper-
Threading enabled, NVIDIA Quadro FX 3400 with 256 MB Video
RAM, running the Rocks Linux cluster distribution 4.0) connected
to 28 projectors (1024x768, arranged in a 7x4 matrix), (ii) switched,
gigabit Ethernet, and (iii) a MacBook Pro (2.33 GHz Intel Core 2
Duo, 3 GB RAM, Mac OS X 10.4.9).

4.1 Methodology

The MacBook Pro was configured with a number of virtual dis-
plays, where each virtual display had a resolution of 1024x768 at
32 bits per pixel. We varied the number of virtual displays between
1,2, 4,8, 16, 24 and 28. For each experiment, a window was cre-
ated that fully covered all the virtual displays (this will be referred
to as the “draw” process). The window was completely redrawn
300 times at an attempted rate of 10 Hz®, after which statistics were

5The window server does not provide a mechanism to control whether a
display is available or not.

9The actual rate was lower for most of the configurations, as discussed
in the next section.

gathered. To redraw the window, the draw process copies an image
from memory to the window.

For each experiment, we measured the following statistics: (i) The
total number of pixels updated by the display services, (ii) total
number of bytes used to send pixel data to the display services, (iii)
the CPU load both at kernel and user level for the draw process,
display sharing daemon (vfbd) and Mac OS X window server.

4.2 Results

Figure 5 shows the target number of Mpixels updated per second
compared to the system’s actual update rate. With up to four dis-
plays, the system tracks the target update rate fairly well. Beyond
four displays, the update rate is stable around 24 Mpixels/second,
much less than the 30-210 MPixels/second needed to track the tar-
getrate. Using 24 virtual displays, the rate is 24.31 Mpixels/second,
corresponding to a refresh rate of 1.35 Hz'.

Total number of megapixels updated per second for 1 to 28 virtual displays
250

200

150

100

Megapixels/second

Megapixels/second —+—

% - Ideal megapixels/second ---%--- ||

12 4 8 16 24 28
Number of virtual displays (each at 1024x768)

Figure 5: The graph shows the actual update rate in megapix-
els/second, and compares it to the target update rate (10 full up-
dates per second).

Figure 6 shows the measured bandwidth. The bandwidth corre-
lates well with the pixel update rate, with a peak bandwidth of 36.5
megabytes/second with 24 virtual displays. Figure 7 shows the ker-
nel and user level CPU load for the different processes involved in
generating and distributing data for the virtual displays. The major-
ity of the CPU is used by the display sharing daemon, followed by
the window server and finally the draw process. The combined load
peaks at 175% with 24 displays (the MacBook Pro has a dual-core
processor).

5 Discussion

The experiments demonstrate that there is a tradeoff between up-
date rate and the size of the area being updated. In the experiments
this area equals the combined resolution of the virtual displays. For
smaller areas, the update rate can be quite high. As an example, a
rate of 24 MPixels/second delivered to a virtual display with reso-
lution 1024x768 corresponds to a refresh rate of 32 Hz. The same
rate to a set of virtual displays with a total resolution of 7168x3072
(the size of the display wall used in the experiments) results in 1.14
Hz. Although not shown in the previous section, the best sustained
refresh rate for full screen updates at 1024x768 in 16-bit color is 25

724 virtual displays in a 6x4 grid results in a total resolution of
6144x3072 pixels; one full update is 18 megapixels, thus the refresh rate
is 24.31/18 = 1.35.

Bandwidth used to update 1 to 28 virtual displays
40

—
35 /

T 30 /

Q

o

@

R4

8 25

>

a

<

g

= 2 / } Megabytes/second —+— |-
15
10

12 4 8 16 24 28

Number of virtual displays (each at 1024x768)

Figure 6: The graph shows the bandwidth used to update the vir-
tual displays.

CPU load for driving 1 to 28 virtual displays
45

Fon

40

35

30

CPU load

25 e
20 ““ Window server user —+— |-
{ / Window server kernel ---x---
15 vibd user % [
vfbd kernel —a—
10 draw user ---m---
/ draw kernel ----e--

S Y
o Leo- ¢ ?
12 4 8 16 24 28

Number of virtual displays (each at 1024x768)

Figure 7: The graph shows CPU load (in percent) for the display
sharing daemon (vfbd), window server and draw process at both
kernel and user level.

Hz, and for 32-bit about 18 Hz. As the resolution increases, the sys-
tem’s performance goes down, but remains usable for mostly static
content (images, documents, etc.).

The network is never saturated by the system - a transfer rate of 36
megabytes/second is less than half of the available bandwidth on a
gigabit Ethernet. Thus, the network is not the main bottleneck. The
CPU load measurements indicate that the main bottleneck is on the
laptop. The load correlates well with the total resolution offered
by the virtual displays, roughly doubling every time the resolution
doubles, until the total CPU load goes beyond what the CPU can
deliver at 4 virtual displays.

The draw process incurs little kernel level load, as it only copies
pixel data from a buffer to its own window. The window server’s
CPU load tracks the load of the draw process well. Interestingly,
this applies both to the window server’s user and kernel level load,
which indicates that the window server may be doing twice the
work necessary to get the pixels to the virtual display (the data ap-
pears to be copied twice). The display sharing daemon spends about
55-60% of its time at user level, with the remaining time spent at
kernel level. The time spent at user level is due to copying and
compressing pixel data, while the time spent at kernel level comes
from transferring pixel data over the network. The main bottleneck
in the system as the total resolution offered by the virtual displays
increases is copying data, and we hypothesize that improved perfor-
mance can be achieved by eliminating redundant memory copies.

The Mac OS X window server is limited to 32 displays (virtual or
not). In practice, the limit is 30, as there usually is a main display
attached (a laptop’s built-in display, for instance). In addition, the
window server has a second, always-available virtual display with a
resolution of 1x1 pixel which is always offline. The purpose of this
display is unknown to the authors and to the authors’ knowledge not
documented. Even though the window server detects the presence
of additional displays beyond the (practical) limit of 30, they are
never used or exposed to clients. While the window server scales
well, other parts of Mac OS X are not as scalable. Attempting to
configure the virtual displays from System Preferences results in
seeing an apparently random selection of at most 10 displays, and
the display configuration menu only manages to show 16.

6 Conclusion

We have introduced the Network Accessible Display model, and
presented the design and implementation of a system that adheres
to the model. A NAD computer runs a display service that com-
municates with clients wishing to use the NAD. Clients discover
NADs using a multicast-based discovery mechanism. We have used
the system to extend a laptop with up to 30 virtual displays and map
them to nearby physical displays, including a 22 Mpixel wall-sized,
high resolution tiled display, and a 0.3 Mpixel portable device.

The bottleneck for increased resolution is copying pixel data locally
on the client. When the number of pixels double, the client-side
CPU load doubles. At a rate of 24 Mpixels/sec to the NADs, all
available CPU is spent. We explain this by (i) load incurred com-
pressing and transferring pixel data, and (ii) copying and composit-
ing pixel data without graphics card hardware acceleration. Despite
the low refresh rate for higher resolutions, the system is still useful
for displaying static content like images and multiple documents.

Acknowledgements

Thanks to Tor-Magne S. Hagen and Espen S. Johnsen for discus-
sions, and Stale W. Nilsen for help with the video. Supported by the
Norwegian Research Council, projects No. 159936/V30, SHARE -
A Distributed Shared Virtual Desktop for Simple, Scalable and Ro-
bust Resource Sharing across Computer, Storage and Display De-
vices, and No. 155550/420 - Display Wall with Compute Cluster.

References

BARATTO, R. A., KIM, L. N., AND NIEH, J. 2005. THINC: a
virtual display architecture for thin-client computing. In SOSP
"05: Proceedings of the twentieth ACM symposium on Operating
systems principles, ACM Press, New York, NY, USA, 277-290.

L1, K., CHEN, H., CHEN, Y., CLARK, D. W., CoOK, P., DAMI-
ANAKIS, S., EsSSL, G., FINKELSTEIN, A., FUNKHOUSER, T.,
HouUsSEL, T., KLEIN, A., L1U, Z., PRAUN, E., SAMANTA, R.,
SHEDD, B., SINGH, J. P., TZANETAKIS, G., AND ZHENG, J.
2000. Building and Using A Scalable Display Wall System.
1EEE Comput. Graph. Appl. 20, 4, 29-317.

RICHARDSON, T., STAFFORD-FRASER, Q., Woo0D, K. R., AND
HOPPER, A. 1998. Virtual Network Computing. IEEE Internet
Computing 2, 1, 33-38.

SCHEIFLER, R. W.; AND GETTYS, J. 1986. The X window sys-
tem. ACM Trans. Graph. 5, 2, 79-109.

STOLK, B., AND WIELINGA, P. 2006. Building a 100 Mpixel
graphics device for the OptlPuter. Future Gener. Comput. Syst.
22,8,972-975.

