
Term Paper Spring 2004

Collaborative Sharing of Windows between MacOS X,
the X Window System and Windows∗

Daniel Stødle
daniels@stud.cs.uit.no

5th October 2004

Abstract

This paper investigates how one best can share windows between many different comput-
ers in a collaborative, cross platform environment. Current collaborative solutions offering
users shared application access are limited in that they either share an entire desktop, or
that the sharing is built into the collaborative application, limiting their usefulness due to
either sharing too much or too little. Platform dependence is another hurdle limiting some of
these applications. In this paper, an architecture and prototype implementation of a system
for sharing individual windows between different window systems is presented, allowing win-
dows on MacOS X to be shared with computers running the X Window System or Windows.
The windows are shared by sharing their pixel representation. We conclude by offering some
performance benchmarks and suggestions for further research.

1 Introduction

In a collaborative environment, one often needs to share information with others in a group.
There are many approaches to sharing this information, ranging from the simple to the highly
complex. A simple way of sharing information would be to sendan e-mail containing a docu-
ment, picture or other data to the entire group. While simple, it is also cumbersome, and in some
settings tend to inhibit the workflow rather than facilitateit.

A more complicated approach uses a remote desktop solution to share what one user sees on
her desktop, with the rest of the group. This allows demonstrations to be performed, and may
even enable the other members of the group to provide input tothe desktop in question, and thus
create a more “true” collaborative environment. Other approaches to collaboration range from
instant messaging, to multi-peer A/V conferencing and “shared whiteboard” solutions.

This paper presents a middle-path between having an entire shared desktop and a shared
whiteboard solution. A shared whiteboard can be great, but has limits in that it is a highly
specialized solution with limited abilities. Sharing the entire display isn’t always ideal either, for
many reasons. Giving others access to ones own desktop is obviously not always desirable1, and
in addition the bandwidth requirements to share an entire display with a room full of computers

∗This work has been supported in part by the NFR funded projectNo. 159936/V30, SHARE - A Distributed Shared
Virtual Desktop for Simple, Scalable and Robust Resource Sharing across Computer, Storage and Display Devices.

1The user may have personal data visible on the display, for instance, and doesn’t want to exit all her personal
applications just to share some discoveries with others.

1



can put a severe stress on the local network. By using a large,shared surface, such as a display
wall, the bandwidth requirements can be reduced, as it no longer is necessary for everyone to
have their own view of the shared display. Instead of sharingthe display with many computers,
the user now only shares it with the display wall. Since the display wall by definition should be
visible to everyone in the group, they are still able to see the information to be discussed. The
granularity, however, is still limited to sharing either the entire desktop, or nothing.

This is where sharing individual windows comes into play. There are essentially two scenar-
ios:

• Making a window’s contents available to other members of thegroup by making it visible
on a shared surface such as a display wall, possibly allowingusers of the shared surface
the ability to interact with the window, or

• sharing a window between multiple users, giving all the users the ability to interact with
the window and modify its state, essentially putting up a view of the window on multiple
different computers.

These two scenarios will be treated in this paper. Their requirements and limitations will be
analyzed, and possible solutions presented, along with thearchitecture and prototype implemen-
tation of a window sharing system that allows sharing of windows between different window
systems and computer platforms.

Section 2 describes the requirements of the system. Section3 details the architecture, before
section 4 explains the protocol used to share resources and windows. Section 5 describes the
implementation of the prototype window sharing system, first detailing the base layer, before
looking at the MacOS X implementation. In section 6, the prototype implementation is bench-
marked and some results given, before section 7 goes on to look at the limitations in the current
prototype. Some future work is also given, before section 8 examines related work. Section 9
concludes the paper.

2 Requirements

This section deals with the requirements of the window sharing system. The primary goals are
to make the system non-invasive2, easy to set up and use, make it scale well and provide the
user with good performance. The system must also work acrossdifferent window systems and
computer platforms, and it should run without needing special privileges.

Sharing windows also presents a number of questions:

1. Should sharing a window be a sender- or receiver initiatedaction? I.e., should the sender
“push” a window to others, or should the receiver(s) “pull” the windows they desire to look
at or interact with?

2. How can a shared window be made portable across many different platforms?

3. What kind of access control should the shared windows support? Can many people pro-
vide input at once (if at all), and if so, how is this input stream best multiplexed between
different users?

2Being non-invasive means that neither an approach that attempts to modify the window server, nor an approach that
uses extensive patching to reach the goal of sharing windows, can be used.

2



The answers to these questions will vary depending on the setting where the window sharing
system is to be used. For instance, pushing windows will be a natural way of dealing with the
first sharing scenario (putting a window up on a shared surface), where the display wall offers
space and users “push” their windows to the wall. A pull-model may be more fitting when there
are many users wanting to share their windows with other users, but not necessarily withevery
user. In this case, users offer a number of windows, and the other users “pull” windows from the
sharing users.

2.1 Portability

Making a shared window portable requires examining the mechanism by which a window can
be shared. The two approaches to sharing a window are sharingpixels, and sharing drawing
operations. Most windowing systems work by providing theirclient applications with a number
of drawing operations. Using these operations, they can compose their user interface. As an
example, an application can tell the window server that it wants to draw a line starting at point A,
ending at point B, having some thickness and some color. The window server will then modify
the pixels visible on the display to draw the line, possibly performing other tasks such as clipping
and applying translucency, depending on what other windowsare obscuring the area occupied
by the target window.

Using drawing operations is the approach taken by the X Window System, commonly re-
ferred to as X11. X11 was developed to allow applications to run on a mainframe, with their
user interfaces exported over a network to a dumb terminal. As such, it sends drawing operations
over the network, making the dumb terminal perform all the hard work of drawing the graphics,
layering windows, clipping, etc. The idea, naturally, is that sending drawing operations requires
a lot less bandwidth than sending the pixels that result fromthe drawing operations. The terminal
has to do the work of drawing, while the mainframe can spend its cycles on running the actual
program.

Unfortunately, it turns out that in order to be platform independent, the only feasible way
to share windows is by exporting the actual pixels resultingfrom the drawing operations to the
receiving clients. The reason for this is simple: The windowsharing system must support many
different window systems, all with different (though similar) drawing operations. If the source
code to the window systems on MacOS X and Windows was available, it would be possible to
create a proxy server that could translate native drawing operations into some platform indepen-
dent format by intercepting the requests before they reach the native window server. Since this
isn’t possible, the only remaining option is to share pixels. Finally, even if proxy serverswere
available, it would still be simpler to share pixels, as opposed to translating drawing operations
between different window servers.

2.2 Access control

Controlling access to shared windows raises a number of issues. Who gets to see the window
and who is allowed to interact with it? Can a shared window be re-shared3, and what happens
to the window when the sender no longer wishes to share it withthe others? Are all the remote
windows closed, or do they remain on their receiver’s screenuntil the receiving user decides to
close it? Naturally, it would no longer be possible to interact with the “stale” window, but does
that automatically imply that the window must be closed?

Ideally, the user sharing the window will have full control over all these aspects. Unfortu-
nately, there is one aspect that the sharing user can not control: It will never be possible to be

3That is, a receiving user decides to share the window she is receiving, thus possibly evading the access limitations
imposed on the original window.

3



completely certain that all traces of a shared window are gone from the receiving users’ com-
puters after the window has been un-shared. The reason is simple - a receiving user can merely
take a screenshot of the window at regular intervals, and by doing so keep a copy of the window
long after it has been un-shared. The same problem applies toa rogue user re-sharing a shared
window. While it won’t be possible for the re-shared window to gain higher privileges (such as
providing input to the original window) than the rogue user already has, the possibility is there
that important or confidential information is shared beyondits originally intended recipients. No
attempt is made to solve this problem - it is assumed that the group having access to the window
is trusted.

Floor management, or floor control, is the second topic related to access control. Floor
control deals with who gets to interact with the shared resource at any given time, and is important
in cases where many people are trying to work together with a window that doesn’t explicitly
support multiple users. The most common floor management techniques are:

1. Token-based

2. Director

3. Slot

4. Anarchy

The token-based approach uses a token that can be passed around between the participating
users. The user holding the token can pass it on when she feelslike it, or it will be passed on
automatically if the holding user is idle for a period of time. When a director-based approach is
used, one person is designated as the director of the session. This person can grant other users
write-access to the window, while revoking it from whoever currently has access. The slot-based
approach simply lets each user interact for some amount of time, before letting the next user
interact - a simplified, and not very convenient, version of the token-based approach. Finally,
anarchy is just that; every user can provide input, with no explicit coordination.

3 Architecture

As part of this project, an architecture and prototype implementation for a window sharing system
was developed. This section describes the architecture of the system, and the reasoning behind
it.

The window sharing system consists of four components: Two platform dependent pieces
called WShare and WClient, and two platform independent pieces calledRClient and
RShare. The letters refer to Window and Resource, respectively, and their relationship is dis-
played in Figure 1.

The two platform independent components, which will be referred to as the base layer, deal
with the low-level details of sharing resources. Instead ofrestricting the base layer to merely
share windows, a broader abstraction was chosen to facilitate sharing other items, such as cursors
and keyboards, as well as more obvious items like disks, at a later time.

The base layer consists of a resource server and code that facilitates interfacing with the
resource server. It supports an infrastructure for publishing resources, and exports a simple inter-
face to allow other applications to subscribe to the shared resources. It also facilitates message
passing between the application sharing a resource, and theapplications subscribing to a shared
resource. It does not concern itself with details such as what protocol or format is being used
to exchange messages. Messages are merely regarded as a stream of bytes from the resource

4



Figure 1: Overall architecture of the window sharing system

server’s point of view, having some length and enough information so as to allow the resource
server to properly route the message to where it is supposed to go.

The RShare component acts as the resource server in the figures. The resource server
can run as a standalone application on any computer, but it isalso possible for theRShare
component to be tightly integrated with theRClient component, as alluded to in Figure 1. The
primary reason for this tighter integration between the twocomponents is to save bandwidth,
thus improving performance. Allowing the resource server to run in either mode is important
in order to realize the two window sharing scenarios: Pushing a window to a shared surface, or
pulling windows from different users onto ones own desktop.The corresponding deployments
are shown in Figures 2 and 3.

Figure 2: Pulling windows

WShare andWClient are responsible for handling the platform dependent issueswhen
sharing windows. They define their own protocol for exchanging updates to a window’s contents,
as well as providing input to a shared window. In addition,WShare must supply the user with
an interface for selecting windows to share, and also provide a steady stream of updates to the

5



Figure 3: Pushing windows

subscribed users as they become available.WClient has less of a responsibility - all it must
do is bring up a representation of a remotely shared window, and then accept and forward input
to it to the resource server. It may also need to support an interface for locating and subscribing
to shared windows, depending on the context in which it is used (no interface is necessary for a
“push-receiver,” i.e. a client that responds to a newly shared window by immediately subscribing
to it, and then displaying it on a shared surface).

4 Resource sharing protocol

This section details the workings of the resource sharing protocol, explaining first the operation
of the base layer, before moving on to the window sharing protocol.

Once a resource server receives a connection, the resource server expects to discover what
kind of connection it is dealing with. The remote peer will initiate communication by sending the
connection type, along with the protocol version it is using. The version is needed to avoid prob-
lems when clients with differing versions attempt to communicate. There are three connection
types:

1. Server

2. Resource

3. User

The Server connection type specifies that the connecting peer is another resource server. In
these cases, the two resource servers will exchange information about their shared resources,
essentially making their resources available to peers connected to the other server. This type of
connection is useful in cases where there is a firewall protecting a number of computers sharing
resources. With one resource server running on the outside of the firewall, the resources made
available on the inside of the firewall will still be accessible from the outside (see Figure 4),
assuming that the server running on the inside connects to the server running on the outside.

6



Figure 4: Example of two resource servers connecting to eachother.

Server peers behave like both Resource and User peers at the same time. Once a server A
has connected to another server B, it will send messages sharing the resources it has available to
server B. Server B then does the same. These newly shared “server” resources are called shadow
resources. When server A receives a request to subscribe to ashadow resource, it will start by
subscribing to the resource from server B, then forward the data associated with the resource to
the peer subscribing to it. An important point is that shadowresources are not shared beyond
their first shadow server. That is, a resource shadowed by server A will not be shared with a
second server C connecting to server A. Server B, however mayshare that resource with server
C. The reason for this limitation is to prevent users from setting up a loop of connected resource
servers, which will clearly lead to an infinite number of shadow resources within a very short
time. This also prevents resources from inadvertently being shared with servers “far” from the
original server, thus avoiding the situation where a user suddenly shares her window with many
more people than she originally intended.

The Resource connection type specifies that the connecting peer will be sharing resources,
whereas the User connection type indicates that the peer will be subscribing to a shared resource.
The main distinction between resource and user peers is thata resource peer may share multiple
resources using one connection to the resource server, while a user peer needs to open a new
connection per resource it wishes to subscribe to (identifying as a user peer for each connection).
The reason for this limitation is to ensure that messages related to a resource will be delivered
promptly to every user peer subscribing to it, avoiding the situation where one large message
related to a different resource clogs the connection to the user. The situation is illustrated in
Figure 5. A second difference is that user peers may not shareresources, and vice versa.

While waiting for the connection type, the server will continue accepting new connections
and delivering messages. User peers may now do any of the following:

1. Request the list of shared resources, optionally specifying a resource type

2. Bind to a resource

3. Send a resource query

4. Send data to a resource

7



Figure 5: Why user peers need one connection per resource subscription.

A typical user peer will request the list of shared resources, and then send queries to get
more information about each resource, before it will end up subscribing (binding) to one of
the resources. At this point it may send further queries regarding that particular resource, or
provide data to the resource. The difference between sending queries and sending data is that
for queries, either the resource server or the peer owning the resource may send a reply to the
query. Also, resource queries are always forwarded, even when dealing with read-only resources.
Examples of standard queries are queries asking for the nameof a resource, a preview of it or
more information about the owner of a resource. A user peer may also unbind from the resource
at any point, if it so desires. This will enable it to reuse theconnection for subscribing to a
different resource.

Resource peers can do the following:

1. Share one or more resources with specific flags

2. Invalidate one or more resources it has shared

3. Broadcast data to one of the shared resources

4. Respond to a resource query

5. Change the flags associated with a resource

A resource peer will usually share resources as the user controlling the peer makes differ-
ent resources (such as windows) available. The flags specified when sharing the resource give
hints to subscribing peers about what they are allowed to do with the resource, and also allows for
some server side configuration; the currently supported flags are read-only, protected, no-execute
and no-shadow. A read-only resource implies that data from user peers will be stopped by the
server, and not forwarded to the sharing peer (this does not include query messages). A pro-
tected resource requires authentication before the user peer is allowed to successfully subscribe

8



to the resource. The interpretation of the no-execute flag depends on the type of resource, and
is enforced by the sharing peer (i.e., the server only passesthe flag along to subscribing peers).
For windows, the no-execute flag means that subscribed usersare not allowed to post events.
The no-shadow flag indicates that the resource server shouldnot share this resource with other
connecting resource servers (i.e. server connections).

The messages the server can send fall into the following categories:

1. Replies (such as “resource shared” when a request to sharea resource is received, or “re-
source bound” when a user peer asks to subscribe to a resource)

2. Notifications (a resource has been shared, invalidated orits flags have changed)

3. Errors (resource not found, invalid message, etc.)

4. Routed messages (a query message, for instance, or a broadcast message)

When resources are shared, the resource server will assign the resource a unique ID. This
ID is only unique within each resource server. This also affects shadow resources: A shadow
resource does not retain its ID on its shadow server(s). The implication of this is that subscribing
and sharing peers should not embed specific resource IDs in their messages, or if they do, share
the resource with the no-shadow flag set.

When a user peer binds to a resource, the server will inform the peer owning the resource
that someone has bound to the resource. Likewise, when a peerunbinds itself from a resource,
the owner will be notified. This is done in order to optimize for the fairly common case that
a resource doesn’t have any subscribers. In this case, it would be a waste of bandwidth for
the sharing user to send messages pertaining to that particular resource (for instance window
updates). It also provides the sharing user with the abilityto track the number of subscribers.

In the same manner, all connected user clients will be notified whenever a new resource is
shared, a resource is invalidated or the flags pertaining to aresource change. This, among other
things, makes it possible to create an application that merely subscribes to new resources as they
become available, enabling support for pushing windows.

Authentication is accomplished using a very simple challenge-response based protocol. If a
sharing peer marks one of its resources with the “protected”flag, the server will send a challenge
request to the sharing peer specifying the resource in question. The sharing peer responds with
the challenge, which is forwarded to the user peer attempting to bind to the protected resource.
When the user peer responds to the challenge, the reply is routed back to the owner, who either
accepts or declines the response. If the response is accepted, the server continues with binding
the resource to the user peer. Note that the server does not concern itself with what the challenge
messages contain, only whether the challenge is ultimatelyaccepted or declined by the owner.

4.1 Window sharing protocol

After deliberating over the best way of sharing a window across platforms, the approach taken
in the prototype implementation was to share the raw pixels.This has the advantage of being
completely portable, and requires little less than a suitable display to show the pixels to the user.
It also has some disadvantages: Shared windows will not be able to take advantage of the possibly
greater resolution of a large shared surface, or adapt gracefully to a lower resolution display. In
addition, the bandwidth requirements for a pixel based solution are usually much greater than
those of a protocol-based solution. One exception to this would be displaying a movie, where
exporting drawing operations in essence would be equivalent to sharing pixels: “Copy these
pixels to this rectangle.”

9



Sharing pixels also has a more subtle disadvantage: By sharing pixels, what is shared will be
the pixels that are currently drawn on the sharing computer.This implies that when the window
looses focus, window decorations will be updated to make thewindow appear “inactive.” This
in turn causes the window to appear inactive on all the “slave” displays (i.e., displays where the
shared window is visible), whereas it will accept input as ifit were active. This user interface
inconsistency may cause confusion among users, but the disadvantage is not big enough to justify
an attempt at writing a protocol-based sharing solution.

The window sharing protocol is similar to the one employed byVNC, but not identical. The
only reason for this was to accelerate development of the prototype - developing a new protocol
appeared to be simpler than re-implementing the remote framebuffer protocol utilized by VNC
or integrating sources from one of the open source VNC clones. It was also simpler to integrate
the new protocol with the resource sharing framework developed as part of the prototype.

Once the user has selected a window to share, the resource will be published to the resource
server using the previously described resource sharing protocol. Once one or more users bind
to the shared window, updates will begin being broadcast at some semi-fixed rate (usually at 1
frame per second or more). Each update packet contains encoding information, area covered by
the update, and the (usually compressed) pixels. The sharing peer may send any of the following
messages:

1. Set size

2. Refresh area

3. Move area

4. Frame marker

The set size message instructs the subscribing peers to resize their representation of the win-
dow, to fit the (possibly new) size of the window. The message is sent in response to the window
being resized, or as a response to a subscribing peer’s request. In most cases, this message will
be followed by a refresh message containing pixel data for the newly uncovered area, assuming
that the window grew in size. The move area message informs the subscribing peers that an area
of the window has moved an integral number of pixels, and thatthe pixels representing that area
can be moved to bring the remote representation of the windowup-to-date. This has the potential
to save much bandwidth in cases where the move can actually bedetected4. Finally, the frame
marker message allows the sharing peer to define the start andend of an update frame, as a frame
may consist of multiple refresh area messages. The message is used to gauge performance on
the remote end(s).

Subscribing peers can send the following messages:

1. Get window info

2. Get complete refresh

3. Post event

A subscribing peer will start its interaction by sending theget window info message. This
instructs the sharing peer to return the size of the window, at which point the subscribing peer
will request a complete refresh of the window. It should be noted that between the time that
the peer starts subscribing to the window, and the time it hasgotten a complete refresh, it may

4No attempt has been made to implement this kind of detection,but support for it has been added in case the system
is ported to a platform that supports it natively.

10



have received many partial updates. Naturally, refresh messages that are received prior to the
subscribing client knowing the size of the shared window will be ignored.

The most interesting message is the post event message, which allows a subscribing user to
provide the shared window with input. Input comes in two forms: Keyboard input and mouse
input. As the remote user clicks and enters text in the sharedwindow, the client will send cor-
responding keyboard and mouse events as “resource data” messages to the window resource. If
the shared window supports and allows input, theWShare component will post the events to the
window in question. This will trigger updates in the window that theWShare component will
detect, and then post as refresh messages to the window resource.

The window sharing protocol currently does not do any explicit floor management. Many
users all providing input at the same time are thus likely to step on each others toes. Events
will simply be merged by the sharing peer, and posted to the window in a FIFO manner. While
the protocol doesn’t support floor management, this does notprevent the implementation from
adding it on top of the window sharing protocol.

5 Implementation

This section describes the prototype implementation of thewindow sharing system, first exam-
ining the message format and base layer implementation, before taking a look at the MacOS
X implementation of theWShare andWClient components. The source code is reprinted in
Appendix B, and also available with all supporting files on the accompanying CD-ROM.

5.1 The message format

RShare messages have a fairly simple format. All fields are assumed to be in network byte-
order. Every message, except for the initial identificationmessage containing connection type
and protocol version, will start with 4 bytes describing length (24 bits) and message type (8 bits),
as illustrated in Figure 6. Following this will, depending on the message type, either a resource
ID or a request ID be located. Messages that use a request ID are generally messages that expect
some sort of reply from someoneother than the resource server, and always include a trailing
resource ID. A typical example of such a message is the query message, which will be sent to
the peer owning the referenced resource, when received by the server. When the owning peer
responds, a routing mechanism is needed to send the reply back to the peer originally making the
request. This is where the request ID is used.

The routing mechanism works by having the server record the incoming request ID, and
then exchanging the request ID with a server-unique requestID. The modified message is then
forwarded to the peer owning the resource. When the peer responds, the request ID it responds
with will be the previously assigned, server-unique request ID. This ID is looked up in the server’s
internal routing table, and if found, the message is routed to the original peer, with the original
request ID replaced for the server-unique one. Routes will expire after a server-defined time
(usually about a minute).

For a complete list of the various messages, and their formats, please refer to thershare.h
file on page??.

5.2 The base layer

The base layer is written in C, utilizing standard BSD sockets and pthreads for network and
threading support. TheRShare component works by calling an init routine that spawns off
the server thread. The server thread sets up a socket listening on a caller-defined port (usually

11



Figure 6: The two most common RShare message types.

in the 7000-7010 range), and if enabled, also opens a multicast socket used for RShare server
discovery. Once setup is complete, the server starts accepting connections. The main loop runs
through the available connections, reading data, processing and sending messages. The overview
can be seen in Figure 7.

Figure 7: The server loop.

Misbehaving clients are handled by disconnecting them. Anyresources associated with the
peer (either shared or subscribed) will also be removed. This implies that any resources shared by
a misbehaving peer will be invalidated when the peer’s connection is terminated. Misbehaving
user peers have no effect other than lower the subscription count for the resource they were
subscribing to when they are terminated.

When a resource peer shares a resource, the server creates a resource structure and attaches it

12



to its internal representation of the peer. The resource is assigned an ID, and then entered into a
hash table. This makes it easy to look up resources, and also simple to find the resource’s owner,
since the owner is also stored as part of the resource structure. Similarly, for user peers, once
they subscribe to a resource, the resource’s subscriber count is increased, and a reference to the
resource is attached to the user peer. The resource structure also contains a list of subscribed
peers, making broadcasting information to subscribed peers a simple matter to implement. The
peer and resource structures can be seen in thershare.h file, starting on page??.

5.2.1 RShare server discovery

Server discovery is an optional feature provided by theRShare component. The purpose of
server discovery is to make setup simple for the users, alleviating the need for the user to input
the name of the RShare server to which they want to connect. This allows the user to browse the
available RShare servers without any specific directory being necessary. The feature is especially
useful in the scenario where windows will be pushed to a shared surface. In this case, there will
most likely be only one RShare server in use, and thus the details of connecting to the server can
be completely automated.

Server discovery works by opening a multicast socket on port7000. All messages received
on this socket will come as one of two types: Server solicitations and server advertisements. The
message format is simple - a magic number, followed by the message type, and then either two
nil bytes or the port on which an RShare server is running, as illustrated in Figure 8. The message
ends with a second magic number. The internet address, in case of a server advertisement, will
be taken as the address from where the multicast packet originated. The magic numbers are used
to identify the packet as a valid RShare advertisement or solicitation. All other messages will be
ignored.

Figure 8: The format of an RShare solicitation or advertisement packet.

The server will periodically send advertisements to the multicast address associated with the
discovery socket, with exponentially increasing re-send delays: 1 second, 2 seconds, 4 seconds,
etc, up to a maximum delay of about one hour. An advertisementwill also be sent in response to
a discovery request.

5.2.2 The RClient interface

TheRClient component operates in much the same way as theRShare code. An initialization
routine is called, which spawns off a thread that connects the client to a server specified in the
initialization call. If the server connection is successful, the client code will run a loop sending
and receiving messages. The code using the component queuesmessages for transfer using a
number of messaging functions. When messages are received,a user-supplied callback is called
to inform of the event, and hand over processing to the user.

TheRClient code also provides routines for discovering servers.

13



5.3 WShare and WClient on MacOS X

The MacOS X implementation of the window sharing componentsconsists of two applications
called WPublish and WAccess, respectively supporting sharing windows and accessing shared
windows. Both are written using Cocoa and Objective-C5, integrating neatly with theRShare
andRClient C implementations. Screenshots of the applications can be seen in Figures 9 and
10.

Figure 9: Sharing windows on MacOS X.

In order to understand the MacOS X implementation ofWShare as embodied by the WPub-
lish application, it is necessary to first get a grasp on how MacOS X handles windows and passes
events from the user to applications. On MacOS X, “everything” is a window. The menubar,
menus, submenus, palettes, tooltips, icons on the desktop –they are all windows. In addition, the
concept of an application is different from what one might beused to from an X11 or Microsoft
Windows environment.

An application consists of a menubar, which has commands that act upon the currently active
window, as well as any number of windows and palettes. The menubar is not associated with
any one window, and is always positioned at the top of the screen. There is usually no “root”
window (i.e., no equivalent to the Windows Multi-Document Interface, where one giant root
window contains a number of smaller windows and the application’s menubar, or the X11 root
window which serves as the parent window to all other windows) - all windows are independent
of all other windows, and only occasionally form a hierarchy.

The underlying implementation is also slightly different from the usual implementation on
other platforms, in that nearly every window has its own backbuffer (a common exception to this
rule is games, who often handle their own backbuffers). Whenan application makes changes
to its windows, the changes will first be rendered to the backbuffer, before the window server
composites the changes to screen, taking into account overlapping, possibly translucent windows,

5More information about Objective-C and Cocoa is available in Appendix A, in case the reader is unfamiliar with
development on MacOS X.

14



Figure 10: Accessing shared windows on MacOS X.

and also windows layered below in case the window being rendered is also translucent. This gives
MacOS X an advantage over other window systems, at least whenit comes to sharing windows
with others: A window can be shared, and kept up-to-date, without actually being visible on
screen.

In addition, an application on MacOS X can be written targeting one of three different event
models: Cocoa events, Carbon events and X11 events (in essence, an application linking against
Xlib and friends). This adds to the complexity of a reliable window sharing implementation, as
MacOS X’s window server doesn’t allow posting of events to specific windows. In fact, it doesn’t
even allow posting of events to specific applications6. This implies that although it is possible
to share the window’s graphical contents, allowing other users to interact with the windows may
prove difficult. On the other hand, sharing the entire desktop is comparatively quite simple;
functions exist that allow both the graphical contents of the desktop to be retrieved as well as
“global” posting of mouse and keyboard events. The goal, however, is not to write yet another
remote desktop client7.

Luckily, the window server provides some SPIs8 that allow applications to list all on- and
offscreen windows, as well as gain access to the pixel contents making out these windows. What
it doesn’t provide is a way to post events to specific windows or applications. The prototype
implementation solves this problem by inserting code into all Cocoa applications that allows
WPublish to post events to windows specific to the applications in question. This is done in an
OS sanctioned way, however it still qualifies as a patch and thus may not be suitable in all cases.

6This is not entirely true. By reverse engineering the windowserver, it should be possible to discover the format of
the low-level Mach messages the window server uses to post events to applications, providing a possible event injection
vector. This has not been done, however.

7As a spinoff from this project, the author of this paper has released a shareware remote desktop client for MacOS X
called Desktop Transporter.

8Secret programming interfaces. These are interfaces that aren’t officially supported by Apple, and thus are subject
to change with OS revisions, or even disappear entirely. Binary compatibility between OS releases is thus unlikely
achieved. They are completely undocumented, and their usage is usually discovered through reverse engineering. For
this project the interface to the functions that provide pixel access to windows and allow identification of which window
is at a particular point on screen were reverse engineered.

15



Also, it doesn’t solve the problem of posting events to Carbon or X11 applications.
While MacOS X makes it easy to detect when and where updates occur on the display, using

this API to implement change detection for WPublish doesn’twork. The reason is that windows
may be obscured, or not even visible on screen, yet still receive updates to their backbuffer. The
API provided in MacOS X only reports changes that happen on the display - that is, changes
to backbuffers arenot reported. WPublish solves this by keeping its own copy of thewindow,
and comparing the copy to the actual backbuffer at least onceevery second. WPublish allows
the frequency to be increased by the user, at the cost of more CPU power being used to share
the windows. It also gives the option of simply transferringthe entire window at some frequency
(say once every second), at the cost of much greater bandwidth requirements. Even so, depending
on the contents of the window, and how often the window actually receives updates, the second
approach may be favourable. An example of this would be sharing a window displaying a movie.
Since almost all of the movie window’s contents will change numerous times every second, it
makes good sense to skip the comparison step, and simply transfer everything.

The WAccess implementation is fairly straightforward, giving the user the ability to subscribe
to windows from different resource servers. It uses the RShare server discovery mechanism to
detect servers on the local subnet, and also provides the user with the ability to enter a spe-
cific server address. The user can see a preview of a window before subscribing to it, which is
accomplished by sending a preview query on the resource in question.

Both applications are implemented by having a controller class handling user input and mes-
sages from theRClient layer. When the user interacts with the applications, events are for-
warded in the usual “first-responder” fashion that is commonin Cocoa-based applications.

5.3.1 A platform independent WClient

In order to test the window sharing on more than one platform,a platform independentWClient
was written that utilizes SDL9 to do its input and display handling. It is a bare-bones, not-very-
user-friendly client that simply takes a server address andresource ID as arguments, and then
attempts to subscribe to the specified window. The benefit from using it is that it, by virtue of
both SDL and the base layer code being portable, runs with very little effort on many different
platforms, and thus allows testing of all parts of the system.

5.4 Pushing windows

Pushing windows was easily accomplished by writing a combined resource server and window
client, referred to as the push-receiver. Once the server has started up, the window client will
open a connection to the resource server, waiting for announcements of the availability of new
window resources. As soon as a window resource is detected, it forks off10 an instance of the
platform independentWClient, instructing it to connect to the local server and subscribeto the
newly published window resource.

An example where this setup would work well is when the push-receiver is running on a
computer running the X Window System, and whoseDISPLAY points to a display wall. New
windows would then pop up on the display wall once someone shared it to the push-receiver.

9Simple Direct-Media Layer. An open source, platform independent set of libraries aimed towards game development.
10Forking was a last resort here, but necessary due to SDL’s inability to handle more than one window for every

process.

16



5.5 Performance

In order to improve the performance of the prototype implementation, the window refresh mes-
sages have support for various compression methods (although only one has been implemented).
The compression that currently is used is a simple run-length encoding (RLE) algorithm, that
converts identical runs of pixels into the pair {length, pixel value} and sends this instead. The
encoding supports both 16- and 32-bit pixel depths. An RLE pair is indicated by setting the most
significant bit (MSB) in both 16- and 32-bit varieties. This is not a problem for 32-bit pixels
(which in reality only use the lower 24 of the available 32 bits), but can pose problems with 16-
bit pixel values that use the MSB. Most platforms use this bitto indicate transparency, something
that is mostly irrelevant for the purposes of window sharing, so the use of this bit in a shared
window is silently ignored.

Using RLE encoding has great advantages when the windows that are shared contain many
large areas of the same color (such as the white background ina text editing window), but does
not perform well in cases where the window contains very diverse pixels (such as a movie being
played, or a digital picture). The worst case performance ofthe RLE algorithm is no compression
- the algorithm will thus never produce data that is bigger than its input11.

In addition, the user can elect to share windows using thousands of colors (16-bit) instead of
the (in most cases) native depth of millions (32-bit). This will cut bandwidth usage roughly in
half, and also improve update latency due to the shorter length of the packets12.

A second way to improve performance was to send scan-lines instead of large rectangles
when sending the updates. This incurs a slight overhead due to the message headers, but im-
proves the end-user responsiveness a great deal. The reasonfor this improvement is that the time
required to send a short message is lower than the time required to send a long message, allowing
the message to be processed earlier at the remote end. An illustration of this can be seen in Figure
11.

Figure 11: Sending scan-lines instead of entire areas to improve performance.

The best way to imagine this is to visualize sending a complete refresh. When not sending

11This is only because the algorithm defines one bit in both 16- and 32-bit color entries as unused, and uses this bit for
marking whether the next data element is a pixel or a run-length pair.

12Note that the current implementation only allows the user toshare using the native depth.

17



scan-lines, the entire refresh will be sent as one message. Before the remote end can start drawing
the contents of the windows, it needs to receive the entire refresh message. Since the message is
long, this might take a while, but once the message is received, drawing the update is practically
instantaneous. On the other hand, when sending scan-lines,the user will see a window being
drawn top-to-bottom, one line at a time. This is a good example of overlapping work with I/O.
Finally, sending scan-lines allows the next optimization to work better, though it also has the
effect of making it require more CPU time.

The third optimization, called the congestion-avoidance mechanism, attempts to remove re-
dundant update messages from the sharing peer’s output queue, before they are sent to the re-
source server. This is both an optimization and a necessary mechanism to avoid network conges-
tion - with the network congested, packets will not be delivered promptly, and a large backlog
of updates will pile up on the sharing side. The effect is thatthe remote users see the window
as it was 10 seconds ago, instead of its current state. The mechanism works by examining the
message that was last added to the output queue and extracting the rectangle that describes the
area being updated. It then iterates over all the messages remaining in the output queue, compar-
ing the extracted area to the area described by the current queue element. If the extracted area
completely overlaps the area being examined, that refresh message is removed from the queue,
since a more recent update is available further back. Unfortunately, the congestion-avoidance op-
timization can have a performance impact on the implementation (see 6.1), and it also conflicts
with the local-mode optimization, described next.

The next optimization made to the base layer, called local-mode, allows theRClient com-
ponent to communicate directly with theRShare server by placing messages directly on the
server’s input queue, instead of first transferring them over their communications socket (which
in reality would be the loopback interface). This optimization is only enabled when the server
and client run as part of the same process, and is initiated explicitly by the client code. For se-
curity reasons, the optimization only allows messages fromthe client to the server, not the other
way around. This is to protect the server from accessing invalid memory, caused by a rogue client
attempting to enter local-mode. It is usually used by the sharing peer, as this is the case where
the resource server and resource client most frequently runas part of the same process, and the
amount of traffic from client to server is the greatest.

Finally, as mentioned when describing the MacOS X implementation ofWShare, change
detection is used to minimize the number of pixels that need to be sent over the network. This
part of the implementation compares the pixels from the previous version of the window to
the ones in the current version, and then determines which parts of the window have changed.
In order to reduce the message overhead, the pixels lying adjacent to a changed pixel are also
considered changed. This makes it possible to detect small,non-contiguous, regions and send
them as one unified update. The change detection implementation builds a list of dirty rectangles
that are decomposed into scan-lines and then sent as refreshmessages.

6 Benchmarks

In order to have meaningful benchmarks, it is important to define a proper metric for gauging
the performance of the window sharing system. For this purpose, frames per second (FPS) was
decided upon as the best way of gauging this performance. This allows one to easily study how
sharing many windows from one computer may degrade performance. Bandwidth usage and
latency measures are also used to measure the performance.

The testing setup consisted of a PowerBook 1.25 GHz sharing windows to two PCs with PIII
processors at 400 MHz and 800 MHz running SUSE Linux, all connected by the same local, 100
MBit ethernet network. The figures measured were number of FPS the sharing peer was capable

18



of delivering, and the observed number of FPS at each subscriber. For multiple receivers, the
results are averaged. For all tests, the target FPS was set to1513.

The first benchmark shared one window with the two PCs, starting at one subscriber and
going up to four. The window was a QuickTime window sized at 400x401 pixels, playing a
looping music video14. The pixel depth was 32 bits, and the tests lasted for approximately two
minutes each.

When considering the results from this benchmark, it is important to keep in mind that it is
performed with the constant background load produced by playing the movie. This background
load is not insignificant - measurements indicated that QuickTime Player regularly consumed
more than 50% of the available CPU time during sharing.

Figure 12: Graph showing how FPS varies with number of subscribers and update method.

The graph in Figure 12 shows how the sharing software performs when using either the
change detection based update method, or the plain “send everything as often as possible” ap-
proach as the number of subscribers increases. For the change detection approach, the number
of FPS the sharing peer is capable of delivering is quite limited, and remains fairly constant (the
slight decline is likely due to the increased load of sendingupdates to more subscribers, com-
bined with small variations in background load on the sharing computer). The subscribers have
no problems keeping up in this case.

For the send-everything approach, the results are different. The number of FPS the sender is
capable of delivering sees a slight but steady decline as more time is being spent transferring large
amounts of data. This problem is not visible in the change detection results, as the limiting factor
here is how fast frames can be differentiated, and the speed at which change rectangles can be

13This setting causes a timer to fire at most 15 times per second in the WPublish application. If WPublish spends too
much time performing things like change detection, some of these timer firings may be missed.

14QuickTime Player was instructed to composite frames using the “transparent” transfer routine, which prevents it
from performing hardware-assisted overlay blits. If this had not been done, the only thing the subscribers would see
would be an empty QuickTime window.

19



composed and broadcast. Interestingly, the subscriber-observed number of FPS is significantly
lower than what the sender is capable of delivering. This hasseveral reasons, but the most
important is that the sender will remove frames from its output queue in cases where it suspects
congestion may become a problem (the threshold is adjustable, but for the experiments it was
set at a queue length of 1 MB). This means that even though a frame counts as delivered by the
sender, it may never actually reach the network. Second, congestiondoesbecome a problem,
which is why the number of FPS seen by the receiver eventuallydrops to come on par with what
can be observed when using change detection. A screenshot from a frame of the QuickTime
video can be seen in Figure 13. Note how the window has some quite significant borders that
will be transferred only once by the change detection method.

Figure 13: QuickTime window being shared.

This benchmark shows that using change detection clearly isn’t a good idea in cases where
CPU usage on the sharing computer is important, or when one knows that most of the contents
of the shared window will change often.

The second benchmark examines how the performance scales when the PowerBook shares
more than one window, ranging from one to four. Each window has one client, running on
either of the two PCs. Two of the windows contain fairly static contents, whereas the other two
windows are QuickTime movies. The two static windows are an Excel spreadsheet and a text
editing document, sized at 740x603 and 713x646 pixels respectively. The first movie remains
the same as in the previous benchmark, while the second moviewas sized at 352x353 pixels.
Sharing is performed using either change detection or sending everything at a target of 15 FPS,
and the windows were shared starting with the text document,then the Excel window, the first
movie window and then the second, smaller movie window. During all the tests, the various
static windows were interacted with, in order to provoke updates. Text was entered, cut, pasted,
and the window contents were scrolled around.

The graph in Figure 14 shows how performance deteriorates asmore windows are being
shared by the sender. The first question that arises from looking at the graph is why change
detection reaches such a high number of FPS when sharing a window that is bigger than the
movie shared in the first benchmark. The answer has two parts:First, the movie window used in

20



Figure 14: Graph showing how FPS varies with number of sharedwindows and update method.

the first benchmark was never static (except for maybe a handful pixels in addition to the static
window decorations and widgets), so updates were constantly being sent. To contrast this, the
text edit window rarely changed much, except when actions were performed in the window. The
second part of the answer lies in background load. With a movie playing in the background,
less CPU power is available to perform the change detection.To illustrate the impact of this,
the movie window was shared a second time, using change detection, but this timewithout the
movie playing. With one subscriber, both sharer and subscriber reached an FPS of about 13.7.
During the test, the movie was being jumped through by dragging QuickTime’s time-line slider
to different points, producing changes in the window.

This explains how the FPS seen in the graph can be better than those observed in the first
benchmark, and also illustrates how the contents of the window and the background load can
affect performance. As the graph also shows, sharing a largewindow by constantly sending
everything can be a recipe for bad performance. Delay between action in the local window and
appearance in the remote window was also a problem in this case (see below).

As the number of shared windows increases, the performance of the system keeps dropping.
Change detection doesn’t do much for the movie windows, but at least manages to keep the
bandwidth overhead from sharing the two mostly-static windows low. Unfortunately, at this point
the change detection requires so much time to complete that it devastates the number of FPS the
sharer is capable of delivering, while also being in competition with two playing QuickTime
movies for processor time. A good way to improve on this wouldbe to allow different update
modes for different windows - technically not a problem, butthe interface for WPublish does not
give the user the ability to make this distinction yet.

When change detection isn’t enabled, the drops in framerateare caused mainly by the work
needed to constantly copy the windows and push them onto the network. Since the windows in
this case are much bigger, the total amount of data that needsto be transferred is much greater

21



than what was needed for the first benchmark, explaining the lower framerates15.
The next benchmark examines how the local-mode and sending scan-lines changes the per-

formance of the window sharing system, again using the first playing movie as the shared win-
dow. The two tests were:

1. Local-mode disabled

2. Scan-line mode disabled

Figure 15: Graph showing how FPS varies the various optimizations disabled.

When local-mode is disabled, both sharer- and receiver-observed FPS drops, and quite con-
siderably too (see Figure 15). What is not visible from theseresults, however, is how big the
impact is on the “feel” of the shared windows. The problem with local-mode is that it gets rid of
packets too quickly - so fast, that the congestion-avoidance optimization only works at irregular
intervals when the network becomes heavily congested. The end result is that the subscribers see
frequent freezes and time skips, whereas without local-mode, the frame rate drops slightly, but
the perceived frame rate is much more constant. For one or twosubscribers, local-mode is a win,
but once more subscribers enter the loop, local-mode is no longer a good optimization for the
task of window sharing.

When scan-lines were disabled and entire areas were sent instead, two things happened.
First, the sharer- and receiver-observed FPS soared when one or two subscribers were connected.
Performance wasbetterthan what could be observed when scan-lines were enabled, and surpris-
ingly, out-performed all the other configurations. At threeclients, however, things started looking

15The total area shared is 2205x2003 pixels, equating about 17MB of data requiring transfer as often as possible, com-
pared to 400x401 (times 4 subscribers) = 1600x1604 pixels, or about 10 MB. These amounts of data can clearly saturate
a 100 MBit ethernet network. Note though that these figures donot factor in the gains from using RLE compression,
which is always enabled.

22



down, although this is hard to observe just from looking at the graph. The number of FPS took
a drop, but the performance compared with what was observed in the previous benchmarks was
horrible - in some cases, the picture on screen lagged behindthe actual window with more than
30 seconds, catching up from time to time before freezing. The situation didn’t get better when
the number of clients were increased to four, leading to evengreater delays.

The conclusion that can be drawn from this is that while scan-lines may decrease performance
in some cases, they aid in promoting fairness. Second, they are better suited for the congestion-
avoidance optimization.

In order to investigate whether the congestion-avoidance optimization would work better with
local-mode disabled, the scan-line test was performed oncemore without local-mode. These
results were considerably better - with 4 subscribers easily supported at a steady 7.41 FPS. The
average FPS observed by the receivers was 5.72, and most importantly, the update frequency at
the subscriber end was steady, without the freezes observedin the previous experiment. While
this is uplifting, the window still lagged 12 seconds behindthe window on the sharing computer,
once again reinforcing the merit of the scan-line approach.

These results make it interesting to examine exactly by how much the remote windows lag
behind the real window, located on the sharing user’s computer, when the remote user is interact-
ing with the shared window. In order to get an approximate estimate of the latency from action on
the remote computer, until the result is visible to the remote user(s), the following strategy was
used: A text editing window, sized at 431x347 pixels, was shared using change detection with a
target FPS of 15. Since change detection was used, no refreshmessages are sent unless there is a
change in the window. Thus, when text is entered remotely, the refresh messages resulting from
this are taken to be an implicit acknowledgement of the events posted from the remote computer.
This does not produce an exact estimate in general, but workswell for a window shared using
change detection, and where “unprovoked” changes that could contaminate the measurements
rarely or never occur.

The period of time measured is the time between the moment when the event is queued re-
motely, and the moment when the next refresh message has beenprocessed at the remote end.
Importantly, this includes the time it takes to display the refresh message, an important factor for
interactivity. Measurements that are more than 10 times thecurrent average are discarded. As-
suming the change detection is able to run 15 times pr second,the maximum theoretical latency
is (ideally) 66 ms (with no overhead from the network, etc), and the average can be expected to
lie at 33 ms. The setup can be seen in Figure 16.

The results from this test were as expected from the interactive performance observed during
the test, where the text appeared “instantaneously” as it was entered remotely. The average
measured latency was 10 ms, with the minimum observed latency at 1.2 ms, and the maximum
observed latency at 35.4 ms. The maximumfiltered sample was 944 ms, which is clearly an
unreasonable value. The results compare favourably with the theoretical figures. The reason
why the measured average is better than the theoretical average may be due to the filtering being
performed. When filtering was disabled, the average ended upat 35 ms, which is more in tune
with the expected average, but the measurements appear to beskewed by a few samples that end
up having ridiculously high latency values. This may be an indication that the filtering is flawed
(even though it makes good statistical sense to ignore or give less weight to samples that lie far
away from the current measurement averages), or that the method used to measure the latency
has problems. The spikes can also be explained by intermittent load on one of the computers.

The final benchmark simply aimed at measuring the bandwidth usage for sharing a window,
when either using change detection, or sending everything.The scenario is almost the same as
in the first benchmark, with number of subscribers ranging from one to four, but only sharing the
window for one minute.

As is evident from Figure 17, the bandwidth usage is increasing linearly with the number of

23



Figure 16: Setup for measuring remotely observed latency onposting events.

subscribers. The number of frames delivered doesn’t scale as nicely, but this is likely due to the
changing behaviour of the congestion-avoidance mechanism(it may decide to remove an entire
frame from the output queue, which will lower the FPS count, but prevent congestion so that
further updates will go through without dropping scan-lines).

A second figure of interest related to bandwidth, is the approximate bandwidth savings pro-
vided by the change detection update method. One frame usingthe send-everything approach
averaged 0.52 MB16, while a frame using change detection averaged 0.39 MB. These savings
must be seen in light of the radically lower FPS provided by the change detection, however.

It is difficult to determine why the available bandwidth isn’t further utilized when the send-
everything test reaches 4 subscribers. One possible explanation is background traffic on the
network, preventing WPublish from reaching the network’s peak bandwidth, though in repeated
tests this did not appear to be the case. Another possibilityis that WPublish isn’t able to deliver
the amount of data needed to saturate the network, and finallythe most likely explanation is
that the congestion-avoidance mechanism is acting prematurely, removing data from the output
queue before it is strictly necessary.

6.1 Improving performance further

As these benchmarks were made using a fairly unoptimized version of both the WPublish ap-
plication and the LinuxWClient, there is still room for improvement, both algorithmically
and in the implementation. To determine areas that could useoptimization in WPublish, the

16The reason this is lower than the expected frame size of 0.61 MB (400x401 pixels at 4 bytes each) is partially
due to RLE compression, but mostly due to the congestion-detection mechanism, which should account for most of the
“missing” data.

24



Figure 17: Graphs showing MB/s and number of frames received.

Apple-provided profiler Shark was used to determine potential hot spots in the WPublish imple-
mentation.

Shark pointed at a number of areas where performance could beenhanced. Not surprisingly,
the congestion-avoidance function consumed much time in cases where the output queue was
long. As the congestion-avoidance mechanism works by checking each submitted rectangle
against all the other rectangles in the output queue, its algorithmic complexity at first glance
appears to be linear. However, since we usually submit scan-lines, and the congestion-avoidance
mechanism is invoked once for every rectangle submitted to the queue, it becomes clear that the
useof the algorithm is anything but linear. This algorithm can be further tuned, and enhanced
by using a different data structure, such as a tree, for the window refresh messages (though this
would not integrate well with the current queue-based I/O mechanisms implemented).

A second area concerns the rectangle management routines, which work well for small num-
bers of rectangles, but are unsuitable when the managed rectangles are many and small. The
main performance offenders are recursion, list traversalsand the overhead from object messag-
ing. Taking a different approach, such as the bitmap scheme used in VNC, could definitely
improve performance in cases where change detection is usedon a surface that changes a lot
very frequently.

Much time is also spent fetching a copy of the shared windows’pixels. Although it’s not
possible to optimize the functions provided by the operating system, an attempt to optimize their
use further can be made. For instance, it is not clear whetherthe image handle needs to be
refreshed every time an attempt to access a window’s pixels is made, or if it is possible to use
the one already available. Figuring this out would require taking a second look at the SPI that
provides the image handle.

For the platform independentWClient, the most eligible candidate for optimization is the
drawing routine. Currently, the drawing is more functionalthan optimized for speed, something
that is very visible when sending scan-lines instead of entire rectangles. Once a refresh message
has been received, it will be decompressed and immediately drawn to screen. A better approach
would be to defer the actual screen update, potentially accumulating more scan-lines that can all

25



be drawn in one go.
On a higher level, it should be investigated if there is a middle-path between sending scan-

lines, and sending entire areas, and if so, determine where the peak performance between these
two approaches lie. In such an endeavour, there are many factors to consider, such as message
overhead, delay between message send and the time it is readyto be drawn remotely, how the
solution integrates with the congestion-avoidance code, and lastly if it works well with both
sending everything, and doing change detection.

The ultimate speed-limiting factor, however, is how fast the publisher is able to detect and
send updates. If the publisher is able to saturate the network, it can be assumed that updates are
being delivered as fast as possible. At this point, other bottlenecks should be easier to detect, and
optimize or work around.

7 Limitations and future work

While the prototype implementation works well, it currently only allows sharing of windows
from MacOS X. In order to be complete, implementations should be written for the X Window
System and Microsoft Windows environments as well. The platform independentWClient
works well on X11, but is lacking in ease of use and in that it doesn’t have aWShare counterpart.
Minor changes to the networking code will be needed in order to make the client run on Windows.

Coordinating multiple users’ input to a single shared window (floor control) also needs fur-
ther work, and in trying to look at possible solutions, a minor design flaw in the resource sharing
base layer was uncovered. The flaw resides in the fact that it is impossible for the sharing peer to
send messages to specific subscribers, unless the message isa reply to a message initiated by one
of the subscribers. This in turn implies that peers should have some abstract identifier associated
with them, to allow for more involved message exchanges routed by the resource server.

A rather big limitation with the current MacOS X implementation is that it does not allow
for posting events to all windows (or any windows, dependingon the whether the user will allow
the installation of a small patch or not) - the set of “writable” windows is limited to applications
written in Cocoa. While this is a problem, it is difficult to fixwithout knowing in detail how
the window server sends events to applications. A complete implementation of this has been
left for future work. The main use of sharing information with others still makes the MacOS
X implementation useful, however. A second limitation is that windows utilizing an overlay to
have the video hardware composite their contents for them have a useless backbuffer filled with
the overlay color, giving unexpected results on the receiving ends. This is especially a problem
when sharing movies, as the technique is most commonly used in these applications17.

Finally, the current implementation of theRShare server does not support Server-Server
connections (see Figure 4).

8 Related work

There already exist a number of solutions for sharing eitheran entire desktop or individual ap-
plications with other users. VNC encompasses a number of desktop sharing applications, all
based upon the VNC protocol, including a number of free, opensource versions. VNC is limited
in that it only shares pixels visible on the display - while some implementations allow sharing
only a part of the display, it is still only the pixels that areactually visible that will be shared.
This contrasts with the window sharing prototype in that theprototype does not require that the
window is actually visible in order to share it with other users, thus allowing the sharing user

17In Apple’s DVD Player, it’s even being “abused” to prevent screenshots being made from the movie.

26



to keep working with her entire display, without having to worry about moving sensitive data
into some “shared region.” Other solutions include Apple and Microsoft’s own OS-dependent
implementations, sharing only the desktop with other computers.

QuiX (later renamed to MaX) [1] is an application that works with older versions of MacOS
(presumably System 7.5 and earlier) to facilitate application sharing between what was then
known as System 7 and the X Window System. It serves as an example showing that developing
a protocol-based sharing solution has merit, but requires large amounts of work to complete, as
it translates QuickDraw18 drawing operations into X protocol drawing operations. This is clearly
different from the approach taken by the prototype, which shares pixels, not drawing operations.

Microsoft’s Messenger and their older NetMeeting softwarealso support application sharing,
but only work between computers running the Windows operating system. They differ from the
prototype in that they share an entire application, and in their dependence on the Windows OS.
In addition, to use Messenger, users are required to “sign-up” with Microsoft in order to get a
“passport,” a significant disadvantage for the privacy-concerned. The window sharing prototype
does not share an entire application, only windows belonging to an application - this is an im-
portant difference, as it implies that while a shared application can pop up a dialog related to a
window, this dialog will only pop up on the local computer’s screen, not on any remote peers’
screens. Sharing a single window in this way can be considered either an inherent weakness or
an inherent strength, depending on one’s point of view.

For the X Window System, there exist a number of packages thatallow one to share X11
applications. The packages usually do this either by windowreplication or window migration,
and the most common implementation technique uses a pseudo-server sitting between the “host”
X server and the X clients that are to be shared, although other possibilities exist. Sharing
windows or applications on X at the protocol level presents anumber of problems [2], as the
X11 protocol wasn’t written with multiple clients in mind. Most of these are related to different
server characteristics (depth, resolution, etc.), and problems translating sequence numbers.

There have been many attempts at writing applications that do X multiplexing (in essence,
application sharing for X11) [3]. Two examples here are Xplexer [4] and XTV [5]. These
applications both attempt to replicate the windows on X11 across multiple different X servers.
Unfortunately, these and other applications replicating windows on X11 tend to be out-of-date
and lack support for newer X11 servers or clients. Many of them are also riddled with bugs,
making them unusable in practice. Finally, the X servers often need to be configured similarly in
order for the replication to succeed acceptably.

Xmove [6] is an application that uses the second approach of window migration. It uses
a pseudo-server to record information that is later used when a request is received to migrate
an application’s windows from one X server to another. The approach works fairly well, but
is limited in that it lacks compatibility with some X applications using more or less esoteric
X extensions, and is failure prone when X servers supportingdifferent extension sets are used.
Xmove differs from the window sharing prototype in its dependence on X11, and the fact that
it doesn’t actually share windows, only migrate them. It doesn’t provide the granularity that the
prototype offers either, as an entire application is moved,not individual windows - a problem
shared with most other X multiplexing solutions as well.

9 Conclusions

A working window sharing prototype has been developed, thatallows MacOS X users to share
their windows with other users on different platforms. Users may interact with the shared win-
dows, with some limitations, and the interface for sharing windows is intuitive and easy to use.

18The low-level drawing toolkit supported by legacy MacOS.

27



Windows can both be pushed to a large shared surface, or pulled by users wanting to see the
shared windows, depending on how the system has been deployed.

The performance of the system is limited by how often the sharing peers do change detection
on the shared windows, the available processing power and onhow capable the underlying net-
work is. The user experience when operating a remote window is excellent, with response times
generally in the 10-35 ms range, depending on the size of the shared window, and how often
change detection is performed.

The system should scale well, up to the point where the sharing user is unable to send updates
to all the subscribers, or no longer has enough processing power locally to handle change detec-
tion on many shared windows. Depending on the content being shared, this limit can be high
or low - using change detection on a mostly static window willallow the window to be shared
with many users, whereas a constantly changing window beingcompletely updated as often as
possible will limit the number of subscribers to at most 5 or 6. Another limiting factor is the size
of the window.

The protocol that was developed for sharing resources workswell, apart from the weakness in
its lack of directly addressable peers. This weakness currently only prevents the development of
proper floor control for the window sharing aspect of resource sharing, and does not substantially
detract from the overall working of the system. The window sharing protocol also performs well,
and offers good room for future improvements, both in terms of how frames are encoded, and
how updates are sent (scan-lines, blocks, etc.).

The window sharing system as it stands now is fully usable forsharing windows from com-
puters running MacOS X to other computers, supporting auto-discovery of other users to make
finding shared windows as easy as possible. The underlying architecture has good room for fur-
ther expansion, both for sharing windows and other resources, providing a good foundation for
further enhancements and research.

10 Acknowledgements

Thanks to Otto J. Anshus, John Markus Bjørndalen, Kai Li and Grant Wallace, for their ideas,
suggestions, discussions and support. Thanks also go out toKarl Gunnar Aarsæther for giving
an outside perspective on the system and criticizing the implementation when it wasn’t working
properly.

References

[1] Klaus H. Wolf, Konrad Froitzheim, and Peter Schulthess.Multimedia application sharing in
a heterogeneous environment. InACM Multimedia 95 - Electronic Proceedings, June 5.-9.
1995. http://www-vs.informatik.uni-ulm.de:81/Papers/ACM95/QM.html.

[2] Hussein Abdel-Wahab and Kevin Jeffay. Issues, problemsand solutions in sharing X clients
on multiple displays.

[3] J.E. Baldeschwieler, T. Gutekunst, and B. Plattner. A survey of X protocol multiplexors.
ACM Computer Communication Review, 23(1), April 1993.

[4] W. Minenko. The application sharing technology.The X Advisory, 1(1), June 1995.

[5] H. Abdel-Wahab and M. Feit. XTV: A framework for sharing Xwindow clients in remote
synchrounous collaboration. IEEE Tricomm, April 1991.

28



[6] Ethan Solomita, James Kempf, and Dan Duchamp. XMove: A pseudoserver for X window
movement.The X Resource, 11(1):143–170, 1994.

[7] The Objective-C Programming Language. Apple Computer, Inc., February 2004.
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/ObjC.pdf.

A A brief introduction to Cocoa and Objective-C

Cococa is the preferred API to target when writing applications for MacOS X, and allows the use
of either Objective-C or Java as the programming language. This appendix is intended to give a
brief insight into how a MacOS X Cocoa application is developed, with the aim of making the
code for WPublish and WAccess easier to understand.

A.1 Objective-C

This section deals with the Objective-C programming language, and is in no way intended to be
comprehensive. For a more detailed introduction, see [7]. The Objective-C language evolved as a
fusion between C and concepts from Smalltalk. It makes a small number of syntactical changes
to the C language, allowing one to create object-oriented applications. Objective-C revolves
around the object and messaging concepts. An object is just acollection of methods and instance
variables, possibly inheriting from a class higher up in theclass hierarchy. Objects communicate
by sending messages to each other - roughly equivalent to function invocation, but implemented
as “true” message sends, yielding much greater flexibility.

The syntax used to send a message to an object is:
[receiver message];
Where themessage part consists of the method name, and any variables. Objective-C

supports named variables, though their use isn’t mandatory. An example from the WPublish
code:

[scr_view connect:servers[srv_idx] res_id:resources[rsrc_idx]];
This sends a message to the objectscr_view, invoking the methodconnect:res_id:

with the parametersservers[srv_idx] andresources[rsrc_idx]. An object can
send a message to itself by sending a message to the objectself, which is similar to thethis
pointer in C++.

Objective-C supports dynamic typing, which among other things allows sending of messages
to objects whose type isn’t known. The message sending mechanism will inspect the object, and
determine if the selector19 being used is supported, and if so, forward the message to it.This
makes it possible for the following line to work, regardlessof what kind of object is contained in
thedata pointer (assuming that the object implements theprocess_msg: method):

rshare_result message_avail_callback(void *data) {
[(id)data process_msg:0];
return kRS_Success;

}

The cast toid, which is the generic Objective-C object type, allows one tomake an attempt
at sending the message to thedata object (assuming it is an object, of course). If the method
doesn’t exist, the runtime will raise an exception, but usually allow the program to continue
executing.

Objective-C has many other features, but these will not be delved further into here.
19A selector can be thought of as the “signature” of a method, consisting of the method name, its named variables and

their types in a form defined by the compiler.

29



A.2 Cocoa and Interface Builder

Cocoa is designed around the Model-View-Controller (MVC) paradigm, where (at least concep-
tually) every object has one model (providing the data), a view (showing one of potentially many
different views of the data) and a controller (which handlesthings like adding data to the model,
user interaction, etc).

The user interface for most Cocoa applications are created using Apple’s Interface Builder
tool. The tool allows the developer to construct the interface visually, using objects from Co-
coa as its building blocks. The interface is stored in a.nib file, which in reality contains
flattened Cocoa objects. When the application starts, the objects are “revived,” and receive an
awakeFromNib message from the Cocoa runtime.

As Interface Builder allows the developer to construct and import classes of her own, these
classes can also be used in constructing the interface. By instantiating controller objects20, con-
nections can be made between objects in the interface, and objects controlling the interface. For
instance, a button can be connected to an action method in a controller class - this is done in
WPublish, when the Add server button is clicked. The button sends a message to its “target,”
specifying itself as the sender. WPublish receives the message, and deals with it accordingly by
allowing the user to add a server.

In addition, connections can be made the other way, by specifying “outlets.” Outlets are just
a convenient way of hooking a class up with objects in the userinterface, allowing the controlling
class to perform additional initialization when it receives theawakeFromNib message. This
can be thought of as assigning an object to an instance variable in the controller’s implementation.
A common outlet would be a text field that contains some sort ofstatus message. The interface
for both connecting actions and outlets in Interface Builder is simply to control-drag from one
object to another, specifying whether the connection is an action or an outlet.

B Source code

This appendix contains all the source code developed as partof the window sharing system.
Please note that while some effort has been made to make linesfit within the “standard” page
margins, this style has not been used everywhere, as the author prefers source code with longer
lines. For best viewing, the digital copies should be studied, with the tab length set to 4 spaces.

Note: Source listing has been omitted for the online versionof this paper.

20Any object can be instantiated. The use of “controller” hereis only an example - the WPublish.nib file contains
both instantiated controller objects, and instantiated view objects.

30


