Term Paper Spring 2004
Collaborative Sharing of Windows between MacOS X,
the X Window System and Windows

Daniel Stadle
daniels@stud.cs.uit.no

5th October 2004

Abstract

This paper investigates how one best can share windows eetmany different comput-
ers in a collaborative, cross platform environment. Cutreallaborative solutions offering
users shared application access are limited in that thelgegishare an entire desktop, or
that the sharing is built into the collaborative applicatiolimiting their usefulness due to
either sharing too much or too little. Platform dependersarnother hurdle limiting some of
these applications. In this paper, an architecture and piype implementation of a system
for sharing individual windows between different windowsteyns is presented, allowing win-
dows on MacOS X to be shared with computers running the X Wirgistem or Windows.
The windows are shared by sharing their pixel representative conclude by offering some
performance benchmarks and suggestions for further rebear

1 Introduction

In a collaborative environment, one often needs to sharmtion with others in a group.
There are many approaches to sharing this information,imgrfgom the simple to the highly
complex. A simple way of sharing information would be to samde-mail containing a docu-
ment, picture or other data to the entire group. While siriple also cumbersome, and in some
settings tend to inhibit the workflow rather than facilitéte

A more complicated approach uses a remote desktop solatisimere what one user sees on
her desktop, with the rest of the group. This allows dematistis to be performed, and may
even enable the other members of the group to provide inghetdesktop in question, and thus
create a more “true” collaborative environment. Other apphes to collaboration range from
instant messaging, to multi-peer A/V conferencing and fstavhiteboard” solutions.

This paper presents a middle-path between having an emhiined desktop and a shared
whiteboard solution. A shared whiteboard can be great, batlimits in that it is a highly
specialized solution with limited abilities. Sharing theiee display isn't always ideal either, for
many reasons. Giving others access to ones own desktopitsushvnot always desirableand
in addition the bandwidth requirements to share an entgplay with a room full of computers

*This work has been supported in part by the NFR funded pr&ject159936/V30, SHARE - A Distributed Shared
Virtual Desktop for Simple, Scalable and Robust Resour@iB across Computer, Storage and Display Devices.

1The user may have personal data visible on the display, &iaice, and doesn’t want to exit all her personal
applications just to share some discoveries with others.

can put a severe stress on the local network. By using a lahgeed surface, such as a display
wall, the bandwidth requirements can be reduced, as it ngelois necessary for everyone to
have their own view of the shared display. Instead of shatieglisplay with many computers,
the user now only shares it with the display wall. Since trepldiy wall by definition should be
visible to everyone in the group, they are still able to seeitifiormation to be discussed. The
granularity, however, is still limited to sharing eitheetantire desktop, or nothing.

This is where sharing individual windows comes into playefhare essentially two scenar-
ios:

e Making a window’s contents available to other members ofjfoeip by making it visible
on a shared surface such as a display wall, possibly allowsegs of the shared surface
the ability to interact with the window, or

e sharing a window between multiple users, giving all the sisiee ability to interact with
the window and modify its state, essentially putting up awid the window on multiple
different computers.

These two scenarios will be treated in this paper. Theirirements and limitations will be
analyzed, and possible solutions presented, along withrtiiétecture and prototype implemen-
tation of a window sharing system that allows sharing of wind between different window
systems and computer platforms.

Section 2 describes the requirements of the system. Settletails the architecture, before
section 4 explains the protocol used to share resources anttbwis. Section 5 describes the
implementation of the prototype window sharing systemt fietailing the base layer, before
looking at the MacOS X implementation. In section 6, the giyyie implementation is bench-
marked and some results given, before section 7 goes onkatdbe limitations in the current
prototype. Some future work is also given, before sectiona@renes related work. Section 9
concludes the paper.

2 Requirements

This section deals with the requirements of the window siggsiystem. The primary goals are
to make the system non-invasfyeeasy to set up and use, make it scale well and provide the
user with good performance. The system must also work adifiesent window systems and
computer platforms, and it should run without needing sgqmivileges.

Sharing windows also presents a number of questions:

1. Should sharing a window be a sender- or receiver initiatgithn? I.e., should the sender
“push” a window to others, or should the receiver(s) “putietwindows they desire to look
at or interact with?

2. How can a shared window be made portable across manystiffpltatforms?

3. What kind of access control should the shared windowsa@tppgCan many people pro-
vide input at once (if at all), and if so, how is this input stne best multiplexed between
different users?

2Being non-invasive means that neither an approach thanpiseto modify the window server, nor an approach that
uses extensive patching to reach the goal of sharing windmavsbe used.

The answers to these questions will vary depending on thieg&there the window sharing
system is to be used. For instance, pushing windows will bataral way of dealing with the
first sharing scenario (putting a window up on a shared se)fachere the display wall offers
space and users “push” their windows to the wall. A pull-niaday be more fitting when there
are many users wanting to share their windows with othersyert not necessarily witbvery
user. In this case, users offer a number of windows, and trer osers “pull” windows from the
sharing users.

2.1 Portability

Making a shared window portable requires examining the aueisim by which a window can
be shared. The two approaches to sharing a window are shaixels, and sharing drawing
operations. Most windowing systems work by providing thedient applications with a number
of drawing operations. Using these operations, they carposmtheir user interface. As an
example, an application can tell the window server that ittw#o draw a line starting at point A,
ending at point B, having some thickness and some color. Théaw server will then modify
the pixels visible on the display to draw the line, possitdyfprming other tasks such as clipping
and applying translucency, depending on what other winda@obscuring the area occupied
by the target window.

Using drawing operations is the approach taken by the X Win8gstem, commonly re-
ferred to as X11. X11 was developed to allow applicationsuto on a mainframe, with their
user interfaces exported over a network to a dumb termimabukh, it sends drawing operations
over the network, making the dumb terminal perform all thedhvaork of drawing the graphics,
layering windows, clipping, etc. The idea, naturally, iatteending drawing operations requires
a lot less bandwidth than sending the pixels that result ttedrawing operations. The terminal
has to do the work of drawing, while the mainframe can spendyitles on running the actual
program.

Unfortunately, it turns out that in order to be platform ipdadent, the only feasible way
to share windows is by exporting the actual pixels resulfiogh the drawing operations to the
receiving clients. The reason for this is simple: The winddaring system must support many
different window systems, all with different (though siar) drawing operations. If the source
code to the window systems on MacOS X and Windows was avail&bivould be possible to
create a proxy server that could translate native drawimgaijns into some platform indepen-
dent format by intercepting the requests before they reaemative window server. Since this
isn't possible, the only remaining option is to share pixéigally, even if proxy serveraere
available, it would still be simpler to share pixels, as oggmbto translating drawing operations
between different window servers.

2.2 Access control

Controlling access to shared windows raises a number oéssswho gets to see the window
and who is allowed to interact with it? Can a shared windowebshared, and what happens
to the window when the sender no longer wishes to share ittvélothers? Are all the remote
windows closed, or do they remain on their receiver’s scredit the receiving user decides to
close it? Naturally, it would no longer be possible to intnaith the “stale” window, but does
that automatically imply that the window must be closed?

Ideally, the user sharing the window will have full contralen all these aspects. Unfortu-
nately, there is one aspect that the sharing user can nabtohtwill never be possible to be

3That is, a receiving user decides to share the window sheésviag, thus possibly evading the access limitations
imposed on the original window.

completely certain that all traces of a shared window areedomm the receiving users’ com-
puters after the window has been un-shared. The reasonpéesira receiving user can merely
take a screenshot of the window at regular intervals, anclnygdso keep a copy of the window
long after it has been un-shared. The same problem appleesdgue user re-sharing a shared
window. While it won’t be possible for the re-shared windawgain higher privileges (such as
providing input to the original window) than the rogue uskeady has, the possibility is there
that important or confidential information is shared beyisdriginally intended recipients. No
attempt is made to solve this problem - it is assumed thatritngpghaving access to the window
is trusted.

Floor management, or floor control, is the second topic edlab access control. Floor
control deals with who gets to interact with the shared resmat any given time, and is important
in cases where many people are trying to work together withinalew that doesn’t explicitly
support multiple users. The most common floor managemembigees are:

1. Token-based
2. Director
3. Slot

4. Anarchy

The token-based approach uses a token that can be passad between the participating
users. The user holding the token can pass it on when shelifeel or it will be passed on
automatically if the holding user is idle for a period of tim&hen a director-based approach is
used, one person is designated as the director of the segdimperson can grant other users
write-access to the window, while revoking it from whoeverrently has access. The slot-based
approach simply lets each user interact for some amount, tbefore letting the next user
interact - a simplified, and not very convenient, versionhaf token-based approach. Finally,
anarchy is just that; every user can provide input, with naiei coordination.

3 Architecture

As part of this project, an architecture and prototype imp@atation for a window sharing system
was developed. This section describes the architectufeeafytstem, and the reasoning behind
it.

The window sharing system consists of four components: Tiatiggm dependent pieces
called Wshar e and WO i ent, and two platform independent pieces callk@ i ent and
RShar e. The letters refer to Window and Resource, respectively,thair relationship is dis-
played in Figure 1.

The two platform independent components, which will bemefé to as the base layer, deal
with the low-level details of sharing resources. Insteadestricting the base layer to merely
share windows, a broader abstraction was chosen to féeiitearing other items, such as cursors
and keyboards, as well as more obvious items like disks,ateatime.

The base layer consists of a resource server and code thiaafes interfacing with the
resource server. It supports an infrastructure for pulsigshesources, and exports a simple inter-
face to allow other applications to subscribe to the shagsdurces. It also facilitates message
passing between the application sharing a resource, arapfiieations subscribing to a shared
resource. It does not concern itself with details such ag wiaocol or format is being used
to exchange messages. Messages are merely regarded aana chigytes from the resource

| RClient | | WClient |

Receiving user
T

. M I

WSh c ' ' : !
RShare U EIERERE R >

|

Sharing user A l |

|.'.‘

|

| RClient | | WClient |

Receiving user

Figure 1: Overall architecture of the window sharing system

server's point of view, having some length and enough infdrom so as to allow the resource
server to properly route the message to where it is supposgal t

The RShar e component acts as the resource server in the figures. Tharcesserver
can run as a standalone application on any computer, butais possible for th&Shar e
component to be tightly integrated with tR€l i ent component, as alluded to in Figure 1. The
primary reason for this tighter integration between the temponents is to save bandwidth,
thus improving performance. Allowing the resource sereerun in either mode is important
in order to realize the two window sharing scenarios: Pushimindow to a shared surface, or
pulling windows from different users onto ones own desktdpe corresponding deployments
are shown in Figures 2 and 3.

(= r=d.... { RClient | | WClient |
WShare RClient RShare |& -:"""""

User pulling windows
User sharing windows e, . N

1 [RCiient | [WClient |

User pulling windows

WShare RClient RShare ' S

L User sharing windows 1 RClient | l WClient |

User pulling windows

Figure 2: Pulling windows

Wshar e andWCl i ent are responsible for handling the platform dependent issuesn
sharing windows. They define their own protocol for exchaggipdates to a window’s contents,
as well as providing input to a shared window. In additid8har e must supply the user with
an interface for selecting windows to share, and also peogidteady stream of updates to the

WShare RClient

User pushing windows

WShare RClient P ----:«-««+-.. RShare RClient W(Client

User pushing windows wm Shared surface

WShare RClient

User pushing windows

Figure 3: Pushing windows

subscribed users as they become availal#@. i ent has less of a responsibility - all it must
do is bring up a representation of a remotely shared windod/tlaen accept and forward input
to it to the resource server. It may also need to support anfawe for locating and subscribing
to shared windows, depending on the context in which it iglse interface is necessary for a
“push-receiver,” i.e. a client that responds to a newly stavindow by immediately subscribing
to it, and then displaying it on a shared surface).

4 Resource sharing protocol

This section details the workings of the resource shariogpgol, explaining first the operation
of the base layer, before moving on to the window sharinggoait

Once a resource server receives a connection, the resarme¥ expects to discover what
kind of connection it is dealing with. The remote peer wiltislte communication by sending the
connection type, along with the protocol version it is usige version is needed to avoid prob-
lems when clients with differing versions attempt to cominate. There are three connection
types:

1. Server
2. Resource

3. User

The Server connection type specifies that the connectingip@aother resource server. In
these cases, the two resource servers will exchange infiormabout their shared resources,
essentially making their resources available to peersextied to the other server. This type of
connection is useful in cases where there is a firewall ptiogga number of computers sharing
resources. With one resource server running on the outsitte direwall, the resources made
available on the inside of the firewall will still be accedsifrom the outside (see Figure 4),
assuming that the server running on the inside connectgtseiver running on the outside.

Internet Intranet

V.

[Sharing user]

Firewall
1

Figure 4: Example of two resource servers connecting to etmu.

Server peers behave like both Resource and User peers artigetisne. Once a server A
has connected to another server B, it will send messageingliae resources it has available to
server B. Server B then does the same. These newly sharegf'sersources are called shadow
resources. When server A receives a request to subscribshadaw resource, it will start by
subscribing to the resource from server B, then forward #ta dssociated with the resource to
the peer subscribing to it. An important point is that shadesources are not shared beyond
their first shadow server. That is, a resource shadowed bersérwill not be shared with a
second server C connecting to server A. Server B, howeversimane that resource with server
C. The reason for this limitation is to prevent users frontisgtup a loop of connected resource
servers, which will clearly lead to an infinite number of stadesources within a very short
time. This also prevents resources from inadvertentlydshared with servers “far” from the
original server, thus avoiding the situation where a usddeunly shares her window with many
more people than she originally intended.

The Resource connection type specifies that the conneatiegwvall be sharing resources,
whereas the User connection type indicates that the pedsanslubscribing to a shared resource.
The main distinction between resource and user peers ia ttegburce peer may share multiple
resources using one connection to the resource serveg @ahiker peer needs to open a new
connection per resource it wishes to subscribe to (idantifgs a user peer for each connection).
The reason for this limitation is to ensure that messageseelto a resource will be delivered
promptly to every user peer subscribing to it, avoiding titeasion where one large message
related to a different resource clogs the connection to #e. uThe situation is illustrated in
Figure 5. A second difference is that user peers may not shaoeirces, and vice versa.

While waiting for the connection type, the server will conigé accepting new connections
and delivering messages. User peers may now do any of ttoavinti:

1. Request the list of shared resources, optionally spagify resource type
2. Bind to a resource

3. Send a resource query

4

. Send data to a resource

[Sharing user A

RShare

—-

[SharinguserB --~

i "‘7/ 1. Message from user B is delayed
while delivery of message from
user A takes place.

[Sharing user A

RShare

[SharinguserB t---

2. Receiving user is using two connections to subscribe to the two different
resources. The bandwidth for receiving messages ends up being shared.

Figure 5: Why user peers need one connection per resourserfution.

A typical user peer will request the list of shared resoyressl then send queries to get
more information about each resource, before it will end wipssribing (binding) to one of
the resources. At this point it may send further queriesrdigg that particular resource, or
provide data to the resource. The difference between sgmiaries and sending data is that
for queries, either the resource server or the peer owniagabource may send a reply to the
query. Also, resource queries are always forwarded, evemwhaling with read-only resources.
Examples of standard queries are queries asking for the n&@eesource, a preview of it or
more information about the owner of a resource. A user pegratz® unbind from the resource
at any point, if it so desires. This will enable it to reuse tmmnection for subscribing to a
different resource.

Resource peers can do the following:

1. Share one or more resources with specific flags
2. Invalidate one or more resources it has shared
3. Broadcast data to one of the shared resources
4. Respond to a resource query

5. Change the flags associated with a resource

A resource peer will usually share resources as the userotlorg the peer makes differ-
ent resources (such as windows) available. The flags spkeifien sharing the resource give
hints to subscribing peers about what they are allowed toittothe resource, and also allows for
some server side configuration; the currently supported fiag read-only, protected, no-execute
and no-shadow. A read-only resource implies that data freen peers will be stopped by the
server, and not forwarded to the sharing peer (this doesncbide query messages). A pro-
tected resource requires authentication before the useripallowed to successfully subscribe

to the resource. The interpretation of the no-execute flpgm#s on the type of resource, and
is enforced by the sharing peer (i.e., the server only pakseffag along to subscribing peers).
For windows, the no-execute flag means that subscribed asensot allowed to post events.
The no-shadow flag indicates that the resource server shotiishare this resource with other
connecting resource servers (i.e. server connections).

The messages the server can send fall into the followingjosaitss:

1. Replies (such as “resource shared” when a request to aliesaurce is received, or “re-
source bound” when a user peer asks to subscribe to a reyource

2. Notifications (a resource has been shared, invalidatéd fiags have changed)
3. Errors (resource not found, invalid message, etc.)

4. Routed messages (a query message, for instance, or @asbatessage)

When resources are shared, the resource server will assgrsource a unique ID. This
ID is only unique within each resource server. This alsocifahadow resources: A shadow
resource does not retain its ID on its shadow server(s). Mpé&dation of this is that subscribing
and sharing peers should not embed specific resource IDsimmtiessages, or if they do, share
the resource with the no-shadow flag set.

When a user peer binds to a resource, the server will infoerpter owning the resource
that someone has bound to the resource. Likewise, when aipbids itself from a resource,
the owner will be notified. This is done in order to optimize the fairly common case that
a resource doesn’t have any subscribers. In this case, idwmmia waste of bandwidth for
the sharing user to send messages pertaining to that partiresource (for instance window
updates). It also provides the sharing user with the alidityack the number of subscribers.

In the same manner, all connected user clients will be ndtifieenever a new resource is
shared, a resource is invalidated or the flags pertainingés@urce change. This, among other
things, makes it possible to create an application that imstébscribes to new resources as they
become available, enabling support for pushing windows.

Authentication is accomplished using a very simple chgkeresponse based protocol. If a
sharing peer marks one of its resources with the “protedtad; the server will send a challenge
request to the sharing peer specifying the resource in ignesthe sharing peer responds with
the challenge, which is forwarded to the user peer attemtirbind to the protected resource.
When the user peer responds to the challenge, the replytisddack to the owner, who either
accepts or declines the response. If the response is adc#ipteserver continues with binding
the resource to the user peer. Note that the server doesmereatself with what the challenge
messages contain, only whether the challenge is ultimatsgpted or declined by the owner.

4.1 Window sharing protocol

After deliberating over the best way of sharing a window asrplatforms, the approach taken
in the prototype implementation was to share the raw pix&lds has the advantage of being
completely portable, and requires little less than a sletdlsplay to show the pixels to the user.
It also has some disadvantages: Shared windows will notle¢@take advantage of the possibly
greater resolution of a large shared surface, or adaptfgithce a lower resolution display. In
addition, the bandwidth requirements for a pixel basedt&milare usually much greater than
those of a protocol-based solution. One exception to thigldvbe displaying a movie, where
exporting drawing operations in essence would be equivdatesharing pixels: “Copy these
pixels to this rectangle.”

Sharing pixels also has a more subtle disadvantage: Bynghairiels, what is shared will be
the pixels that are currently drawn on the sharing compiieis implies that when the window
looses focus, window decorations will be updated to makeviheow appear “inactive.” This
in turn causes the window to appear inactive on all the “Sldigplays (i.e., displays where the
shared window is visible), whereas it will accept input ai iffere active. This user interface
inconsistency may cause confusion among users, but themvdistage is not big enough to justify
an attempt at writing a protocol-based sharing solution.

The window sharing protocol is similar to the one employed/DyC, but not identical. The
only reason for this was to accelerate development of thigme - developing a new protocol
appeared to be simpler than re-implementing the remoteefpaifer protocol utilized by VNC
or integrating sources from one of the open source VNC clolegas also simpler to integrate
the new protocol with the resource sharing framework deedaas part of the prototype.

Once the user has selected a window to share, the resoutdepiliblished to the resource
server using the previously described resource sharinggrb Once one or more users bind
to the shared window, updates will begin being broadcastratssemi-fixed rate (usually at 1
frame per second or more). Each update packet containsiegdatbrmation, area covered by

the update, and the (usually compressed) pixels. The shaeiar may send any of the following
messages:

1. Setsize

2. Refresh area
3. Move area
4

. Frame marker

The set size message instructs the subscribing peers ze thsir representation of the win-
dow, to fit the (possibly new) size of the window. The messagent in response to the window
being resized, or as a response to a subscribing peer'sstednenost cases, this message will
be followed by a refresh message containing pixel data ®ngwly uncovered area, assuming
that the window grew in size. The move area message inforesubscribing peers that an area
of the window has moved an integral number of pixels, andtti@pixels representing that area
can be moved to bring the remote representation of the wingwio-date. This has the potential
to save much bandwidth in cases where the move can actuatigteeted. Finally, the frame
marker message allows the sharing peer to define the staeraiof an update frame, as a frame
may consist of multiple refresh area messages. The messaged to gauge performance on
the remote end(s).

Subscribing peers can send the following messages:

1. Get window info
2. Get complete refresh

3. Post event

A subscribing peer will start its interaction by sending tfet window info message. This
instructs the sharing peer to return the size of the windowyhach point the subscribing peer
will request a complete refresh of the window. It should b&edahat between the time that
the peer starts subscribing to the window, and the time itgodten a complete refresh, it may

4No attempt has been made to implement this kind of detedpiginsupport for it has been added in case the system
is ported to a platform that supports it natively.

10

have received many partial updates. Naturally, refreshsages that are received prior to the
subscribing client knowing the size of the shared window belignored.

The most interesting message is the post event messagé alluiws a subscribing user to
provide the shared window with input. Input comes in two ferrKeyboard input and mouse
input. As the remote user clicks and enters text in the shaiedow, the client will send cor-
responding keyboard and mouse events as “resource dataadgessto the window resource. If
the shared window supports and allows input,\thar e component will post the events to the
window in question. This will trigger updates in the winddwat theWshar e component will
detect, and then post as refresh messages to the windowgesou

The window sharing protocol currently does not do any explicor management. Many
users all providing input at the same time are thus likelytép ©n each others toes. Events
will simply be merged by the sharing peer, and posted to tmelaw in a FIFO manner. While
the protocol doesn’t support floor management, this doepresent the implementation from
adding it on top of the window sharing protocol.

5 Implementation

This section describes the prototype implementation ofatimelow sharing system, first exam-
ining the message format and base layer implementatiooyrdedking a look at the MacOS
X implementation of thaA\Bhar e andWCl i ent components. The source code is reprinted in
Appendix B, and also available with all supporting files oe #atcompanying CD-ROM.

5.1 The message format

RShare messages have a fairly simple format. All fields aserasd to be in network byte-
order. Every message, except for the initial identificatiogssage containing connection type
and protocol version, will start with 4 bytes describingdédn(24 bits) and message type (8 bits),
as illustrated in Figure 6. Following this will, depending the message type, either a resource
ID or arequest ID be located. Messages that use a request ifeaerally messages that expect
some sort of reply from someor¢her than the resource server, and always include a trailing
resource ID. A typical example of such a message is the quessage, which will be sent to
the peer owning the referenced resource, when receivedebgettver. When the owning peer
responds, a routing mechanism is needed to send the refdydte peer originally making the
request. This is where the request ID is used.

The routing mechanism works by having the server record ibeming request ID, and
then exchanging the request ID with a server-unique redDesthe modified message is then
forwarded to the peer owning the resource. When the peeomdspthe request ID it responds
with will be the previously assigned, server-unique regli2sThis ID is looked up in the server’s
internal routing table, and if found, the message is roubeithé original peer, with the original
request ID replaced for the server-unique one. Routes wjillre after a server-defined time
(usually about a minute).

For a complete list of the various messages, and their fasmédase refer to tireshar e. h
file on page??.

5.2 Thebaselayer

The base layer is written in C, utilizing standard BSD soslkatd pthreads for network and
threading support. ThBShar e component works by calling an init routine that spawns off
the server thread. The server thread sets up a socket tligtenia caller-defined port (usually

11

Length and type Request ID Resource ID Optional data

/\/_'_\

Type 1 | 24 bits | 8 bits | 32 bits | 32 bits | Data . e
Length and type Resource ID Optional data
Type 2 | 24 bits | 8 bits | 32 bits | Data | . e

Figure 6: The two most common RShare message types.

in the 7000-7010 range), and if enabled, also opens a msfitstacket used for RShare server
discovery. Once setup is complete, the server starts angaginnections. The main loop runs
through the available connections, reading data, pratgssid sending messages. The overview
can be seen in Figure 7.

T Open server and
Initialize :
discovery socket

Accept
connection

Yes

Send discovery
response

Discovery
activity?

Check ready No
sockets v
Read data from Process
\ ready sockets ’ messages

No

m Yes Send messages
exit server g

Figure 7: The server loop.

Misbehaving clients are handled by disconnecting them. respurces associated with the
peer (either shared or subscribed) will also be removed iftplies that any resources shared by
a misbehaving peer will be invalidated when the peer’s cotioe is terminated. Misbehaving
user peers have no effect other than lower the subscriptiantdfor the resource they were
subscribing to when they are terminated.

When a resource peer shares a resource, the server creasesige structure and attaches it

12

to its internal representation of the peer. The resourcesgiaed an ID, and then entered into a
hash table. This makes it easy to look up resources, andialptesto find the resource’s owner,
since the owner is also stored as part of the resource steuc8imilarly, for user peers, once
they subscribe to a resource, the resource’s subscribet increased, and a reference to the
resource is attached to the user peer. The resource sewdaa contains a list of subscribed
peers, making broadcasting information to subscribedspgeimple matter to implement. The
peer and resource structures can be seen inghear e. h file, starting on pag@e?.

5.21 RShareserver discovery

Server discovery is an optional feature provided by R$har e component. The purpose of
server discovery is to make setup simple for the users,iatlag the need for the user to input
the name of the RShare server to which they want to conned.allbws the user to browse the
available RShare servers without any specific directomydrecessary. The feature is especially
useful in the scenario where windows will be pushed to a shsweface. In this case, there will
most likely be only one RShare server in use, and thus théslefaonnecting to the server can
be completely automated.

Server discovery works by opening a multicast socket on pagD. All messages received
on this socket will come as one of two types: Server solicitetand server advertisements. The
message format is simple - a magic number, followed by thesagestype, and then either two
nil bytes or the port on which an RShare server is runninglestiated in Figure 8. The message
ends with a second magic number. The internet address, énofasserver advertisement, will
be taken as the address from where the multicast packenatdgl. The magic numbers are used
to identify the packet as a valid RShare advertisement aritdlon. All other messages will be
ignored.

Magic number 1 Message data Magic number 2
AN N\ N\
0x52536872 Type Port 0x594C5320

<4———— Total length: 12 bytes — —p

Figure 8: The format of an RShare solicitation or advertisenpacket.

The server will periodically send advertisements to thetivast address associated with the
discovery socket, with exponentially increasing re-sealdyss: 1 second, 2 seconds, 4 seconds,
etc, up to a maximum delay of about one hour. An advertisem#lrelso be sent in response to
a discovery request.

5.2.2 TheRClient interface

TheRC i ent component operates in much the same way aB8ar e code. An initialization
routine is called, which spawns off a thread that conne@stient to a server specified in the
initialization call. If the server connection is successtie client code will run a loop sending
and receiving messages. The code using the component guessages for transfer using a
number of messaging functions. When messages are recaiusdy-supplied callback is called
to inform of the event, and hand over processing to the user.

TheRC i ent code also provides routines for discovering servers.

13

5.3 WShareand WClient on MacOS X

The MacOS X implementation of the window sharing componeatssists of two applications
called WPublish and WAccess, respectively supportingisgarvindows and accessing shared
windows. Both are written using Cocoa and Objectivie-@tegrating neatly with th&Shar e
andRd i ent C implementations. Screenshots of the applications caedrmis Figures 9 and
10.

r

8anen WPublish 2|

Server: localhost: 7000 EUS& local server | Status: Connected.

Update method: ' Change detection every second | :]

Published window miniview:

To share a window, click the "Publish window” butten, then click on the
window you wish to share. If successful, the window will show up in

the list of published windows. To remaove a window, simply delete it
from the list.

Published windows: (_ Publish window I
j ﬁpgli:cmif-:n D

Xcode 10028

Figure 9: Sharing windows on MacOS X.

In order to understand the MacOS X implementatiok\Bhar e as embodied by the WPub-
lish application, it is necessary to first get a grasp on how®®& X handles windows and passes
events from the user to applications. On MacOS X, “evergthia a window. The menubar,
menus, submenus, palettes, tooltips, icons on the desktmy-are all windows. In addition, the
concept of an application is different from what one mightised to from an X11 or Microsoft
Windows environment.

An application consists of a menubar, which has commandsithaipon the currently active
window, as well as any number of windows and palettes. Theulvenis not associated with
any one window, and is always positioned at the top of theescr@ here is usually no “root”
window (i.e., no equivalent to the Windows Multi-Documentdrface, where one giant root
window contains a number of smaller windows and the apptin& menubar, or the X11 root
window which serves as the parent window to all other windovadl windows are independent
of all other windows, and only occasionally form a hierarchy

The underlying implementation is also slightly differemtrh the usual implementation on
other platforms, in that nearly every window has its own toadter (a common exception to this
rule is games, who often handle their own backbuffers). Wdrempplication makes changes
to its windows, the changes will first be rendered to the baffkh before the window server
composites the changes to screen, taking into accounegyenig, possibly translucent windows,

SMore information about Objective-C and Cocoa is availabléppendix A, in case the reader is unfamiliar with
development on MacOS X.

14

r@_ Q _@ WAccess

WAccess
Servers: Windows: Preview:
Address [Part D |
141.3.40.76 7000 2
(" Add server._. _\- (“Subscribe to window ‘

Figure 10: Accessing shared windows on MacOS X.

and also windows layered below in case the window being rexids also translucent. This gives
MacOS X an advantage over other window systems, at least ihemes to sharing windows
with others: A window can be shared, and kept up-to-datehowit actually being visible on
screen.

In addition, an application on MacOS X can be written targgtne of three different event
models: Cocoa events, Carbon events and X11 events (incessanapplication linking against
Xlib and friends). This adds to the complexity of a reliablmeéow sharing implementation, as
MacOS X’s window server doesn’t allow posting of events tedfic windows. In fact, it doesn’t
even allow posting of events to specific applicatforihis implies that although it is possible
to share the window’s graphical contents, allowing othersio interact with the windows may
prove difficult. On the other hand, sharing the entire dgsksocomparatively quite simple;
functions exist that allow both the graphical contents @f desktop to be retrieved as well as
“global” posting of mouse and keyboard events. The goal,dvew is not to write yet another
remote desktop clieft

Luckily, the window server provides some SPthat allow applications to list all on- and
offscreen windows, as well as gain access to the pixel ctsiteaking out these windows. What
it doesn’t provide is a way to post events to specific windowagplications. The prototype
implementation solves this problem by inserting code intdCacoa applications that allows
WPublish to post events to windows specific to the applicatio question. This is done in an
OS sanctioned way, however it still qualifies as a patch aunsl tay not be suitable in all cases.

6This is not entirely true. By reverse engineering the wind@mwer, it should be possible to discover the format of
the low-level Mach messages the window server uses to pest®to applications, providing a possible event injection
vector. This has not been done, however.

As a spinoff from this project, the author of this paper hasased a shareware remote desktop client for MacOS X
called Desktop Transporter.

8Secret programming interfaces. These are interfaces that afficially supported by Apple, and thus are subject
to change with OS revisions, or even disappear entirely.aicompatibility between OS releases is thus unlikely
achieved. They are completely undocumented, and theireusagsually discovered through reverse engineering. For
this project the interface to the functions that provideepaccess to windows and allow identification of which window
is at a particular point on screen were reverse engineered.

15

Also, it doesn't solve the problem of posting events to CarboX11 applications.

While MacOS X makes it easy to detect when and where updates on the display, using
this API to implement change detection for WPublish doeso'tk. The reason is that windows
may be obscured, or not even visible on screen, yet stiliveagpdates to their backbuffer. The
API provided in MacOS X only reports changes that happen erdibplay - that is, changes
to backbuffers ar@ot reported. WPublish solves this by keeping its own copy ofvtitedow,
and comparing the copy to the actual backbuffer at least emesy second. WPublish allows
the frequency to be increased by the user, at the cost of mBte gdwer being used to share
the windows. It also gives the option of simply transferrihg entire window at some frequency
(say once every second), at the cost of much greater bartdreigitirements. Even so, depending
on the contents of the window, and how often the window abtuateives updates, the second
approach may be favourable. An example of this would be sparivindow displaying a movie.
Since almost all of the movie window’s contents will changenerous times every second, it
makes good sense to skip the comparison step, and simpsfdaraverything.

The WAccess implementation is fairly straightforward,igithe user the ability to subscribe
to windows from different resource servers. It uses the RShkarver discovery mechanism to
detect servers on the local subnet, and also provides threwibethe ability to enter a spe-
cific server address. The user can see a preview of a windawebstfibscribing to it, which is
accomplished by sending a preview query on the resourcesstigu.

Both applications are implemented by having a controllasghandling user input and mes-
sages from th&kCl i ent layer. When the user interacts with the applications, evarg for-
warded in the usual “first-responder” fashion that is comimno@ocoa-based applications.

5.3.1 A platform independent WClient

In order to test the window sharing on more than one platfarplatform independeMCl i ent
was written that utilizes SD1.to do its input and display handling. It is a bare-bones,veoy-
user-friendly client that simply takes a server addressrasdurce ID as arguments, and then
attempts to subscribe to the specified window. The benefit fusing it is that it, by virtue of
both SDL and the base layer code being portable, runs withlitde effort on many different
platforms, and thus allows testing of all parts of the system

5.4 Pushing windows

Pushing windows was easily accomplished by writing a coedbiresource server and window
client, referred to as the push-receiver. Once the senestaated up, the window client will
open a connection to the resource server, waiting for arteruents of the availability of new
window resources. As soon as a window resource is detectatks off'® an instance of the
platform independendCl i ent , instructing it to connect to the local server and subsdclibe
newly published window resource.

An example where this setup would work well is when the pusteiver is running on a
computer running the X Window System, and wh@eSPLAY points to a display wall. New
windows would then pop up on the display wall once someoneeslisito the push-receiver.

9Simple Direct-Media Layer. An open source, platform indegent set of libraries aimed towards game development.
10Forking was a last resort here, but necessary due to SDLUislityato handle more than one window for every
process.

16

5.5 Performance

In order to improve the performance of the prototype impletaton, the window refresh mes-
sages have support for various compression methods (ghhanly one has been implemented).
The compression that currently is used is a simple run-teegtoding (RLE) algorithm, that
converts identical runs of pixels into the pair {length, glixalue} and sends this instead. The
encoding supports both 16- and 32-bit pixel depths. An RLEipandicated by setting the most
significant bit (MSB) in both 16- and 32-bit varieties. Thssriot a problem for 32-bit pixels
(which in reality only use the lower 24 of the available 3Zpitut can pose problems with 16-
bit pixel values that use the MSB. Most platforms use thisdihdicate transparency, something
that is mostly irrelevant for the purposes of window sharisg the use of this bit in a shared
window is silently ignored.

Using RLE encoding has great advantages when the windowathahared contain many
large areas of the same color (such as the white backgroumtkixt editing window), but does
not perform well in cases where the window contains veryrdiggixels (such as a movie being
played, or a digital picture). The worst case performantb@RLE algorithm is no compression
- the algorithm will thus never produce data that is bigganths input®.

In addition, the user can elect to share windows using thaissaf colors (16-bit) instead of
the (in most cases) native depth of millions (32-bit). Thifi wut bandwidth usage roughly in
half, and also improve update latency due to the shortethesighe packets.

A second way to improve performance was to send scan-liredd of large rectangles
when sending the updates. This incurs a slight overheadaltletmessage headers, but im-
proves the end-user responsiveness a great deal. The featiin improvement is that the time
required to send a short message is lower than the time eshtgisend a long message, allowing
the message to be processed earlier at the remote end. gtratlan of this can be seen in Figure
11.

X0

)O0) S

Region needing | Remote copy
refresh 1

XX

Shared window

Remote copy

Figure 11: Sending scan-lines instead of entire areas toowvepperformance.

The best way to imagine this is to visualize sending a corapiefiresh. When not sending

UThis is only because the algorithm defines one bit in both @8-32-bit color entries as unused, and uses this bit for
marking whether the next data element is a pixel or a runtfepagir.
12Note that the current implementation only allows the useshiare using the native depth.

17

scan-lines, the entire refresh will be sent as one messaereBthe remote end can start drawing
the contents of the windows, it needs to receive the entfresie message. Since the message is
long, this might take a while, but once the message is rededrawing the update is practically
instantaneous. On the other hand, when sending scan-iresiser will see a window being
drawn top-to-bottom, one line at a time. This is a good exanoploverlapping work with 1/0.
Finally, sending scan-lines allows the next optimizationmork better, though it also has the
effect of making it require more CPU time.

The third optimization, called the congestion-avoidan@ehanism, attempts to remove re-
dundant update messages from the sharing peer’s outpué gnefore they are sent to the re-
source server. This is both an optimization and a necessachiamism to avoid network conges-
tion - with the network congested, packets will not be detdepromptly, and a large backlog
of updates will pile up on the sharing side. The effect is thatremote users see the window
as it was 10 seconds ago, instead of its current state. Thbeamism works by examining the
message that was last added to the output queue and exgriiwimectangle that describes the
area being updated. It then iterates over all the messagsniag in the output queue, compar-
ing the extracted area to the area described by the curreniegeilement. If the extracted area
completely overlaps the area being examined, that refressage is removed from the queue,
since a more recent update is available further back. Wmiately, the congestion-avoidance op-
timization can have a performance impact on the implemiemtésee 6.1), and it also conflicts
with the local-mode optimization, described next.

The next optimization made to the base layer, called locadenallows thdkCl i ent com-
ponent to communicate directly with ttRShar e server by placing messages directly on the
server’s input queue, instead of first transferring thenr tiveir communications socket (which
in reality would be the loopback interface). This optimiaatis only enabled when the server
and client run as part of the same process, and is initiatplicék/ by the client code. For se-
curity reasons, the optimization only allows messages ftanclient to the server, not the other
way around. This is to protect the server from accessindichmeemory, caused by a rogue client
attempting to enter local-mode. It is usually used by theisbgeer, as this is the case where
the resource server and resource client most frequentlpsyrart of the same process, and the
amount of traffic from client to server is the greatest.

Finally, as mentioned when describing the MacOS X implesauion of Wshar e, change
detection is used to minimize the number of pixels that nedattsent over the network. This
part of the implementation compares the pixels from the iptessversion of the window to
the ones in the current version, and then determines whidk pathe window have changed.
In order to reduce the message overhead, the pixels lyiragenl to a changed pixel are also
considered changed. This makes it possible to detect snmadtcontiguous, regions and send
them as one unified update. The change detection implern@ntatilds a list of dirty rectangles
that are decomposed into scan-lines and then sent as refiesstages.

6 Benchmarks

In order to have meaningful benchmarks, it is important tiindea proper metric for gauging
the performance of the window sharing system. For this mepfsrames per second (FPS) was
decided upon as the best way of gauging this performance. alloiws one to easily study how
sharing many windows from one computer may degrade perficenaBandwidth usage and
latency measures are also used to measure the performance.
The testing setup consisted of a PowerBook 1.25 GHz shaiimdows to two PCs with PIII

processors at 400 MHz and 800 MHz running SUSE Linux, all eated by the same local, 100
MBIt ethernet network. The figures measured were number 8ftRE sharing peer was capable

18

of delivering, and the observed number of FPS at each sbescri-or multiple receivers, the
results are averaged. For all tests, the target FPS was 58to

The first benchmark shared one window with the two PCs, stadt one subscriber and
going up to four. The window was a QuickTime window sized adxD1 pixels, playing a
looping music vide&*. The pixel depth was 32 bits, and the tests lasted for apmabely two
minutes each.

When considering the results from this benchmark, it is irtgrt to keep in mind that it is
performed with the constant background load produced hyingdethe movie. This background
load is not insignificant - measurements indicated that Klioe Player regularly consumed
more than 50% of the available CPU time during sharing.

10
9 {
8 ‘\‘\.\—1
7
el
s
§ 6 X - —a&— Everything (Sharer)
5 g N - — —x— — Everything (Receiver)
: RN - ---X- - - Change detection (Sharer)
:‘E’ 4 > —4&— Change detection (Receiver)
© S~
& S~
3 e
v \ g R 5\.‘\‘1
2
1
0
1 2 3 4
Subscribers

Figure 12: Graph showing how FPS varies with number of sutbsir and update method.

The graph in Figure 12 shows how the sharing software pedomnen using either the
change detection based update method, or the plain “semgtleivg as often as possible” ap-
proach as the number of subscribers increases. For the eldatection approach, the number
of FPS the sharing peer is capable of delivering is quitetdichiand remains fairly constant (the
slight decline is likely due to the increased load of sendipdates to more subscribers, com-
bined with small variations in background load on the sltadomputer). The subscribers have
no problems keeping up in this case.

For the send-everything approach, the results are diffefdre number of FPS the sender is
capable of delivering sees a slight but steady decline as timoe is being spent transferring large
amounts of data. This problem is not visible in the changeali®tn results, as the limiting factor
here is how fast frames can be differentiated, and the spestieh change rectangles can be

13This setting causes a timer to fire at most 15 times per secottiWPublish application. If WPublish spends too
much time performing things like change detection, somé&esé timer firings may be missed.

14QuickTime Player was instructed to composite frames udieg‘transparent” transfer routine, which prevents it
from performing hardware-assisted overlay blits. If theslmot been done, the only thing the subscribers would see
would be an empty QuickTime window.

19

composed and broadcast. Interestingly, the subscribgrebd number of FPS is significantly
lower than what the sender is capable of delivering. This dea®ral reasons, but the most
important is that the sender will remove frames from its atitpueue in cases where it suspects
congestion may become a problem (the threshold is adjesthbt for the experiments it was
set at a queue length of 1 MB). This means that even thoughreefeaunts as delivered by the
sender, it may never actually reach the network. Secondyestiondoesbecome a problem,
which is why the number of FPS seen by the receiver eventdedlys to come on par with what
can be observed when using change detection. A screenshotafiframe of the QuickTime
video can be seen in Figure 13. Note how the window has sonte sjgnificant borders that
will be transferred only once by the change detection method

rB 060 Air - Cherry Blossom Girl.avi

{ oo sae [Y ! |

(e P S (@
‘ |/|;\I |'_/41'| |f/ >-\| [i (;I (:all .

Figure 13: QuickTime window being shared.

This benchmark shows that using change detection clearlyasggood idea in cases where
CPU usage on the sharing computer is important, or when oo@kthat most of the contents
of the shared window will change often.

The second benchmark examines how the performance scadestivta PowerBook shares
more than one window, ranging from one to four. Each window diae client, running on
either of the two PCs. Two of the windows contain fairly statbntents, whereas the other two
windows are QuickTime movies. The two static windows are &ceEspreadsheet and a text
editing document, sized at 740x603 and 713x646 pixels otispd. The first movie remains
the same as in the previous benchmark, while the second m@sesized at 352x353 pixels.
Sharing is performed using either change detection or sgreierything at a target of 15 FPS,
and the windows were shared starting with the text docuntkat the Excel window, the first
movie window and then the second, smaller movie window. myall the tests, the various
static windows were interacted with, in order to provokeatpd. Text was entered, cut, pasted,
and the window contents were scrolled around.

The graph in Figure 14 shows how performance deterioratesase windows are being
shared by the sender. The first question that arises fromrgak the graph is why change
detection reaches such a high number of FPS when sharingdowithat is bigger than the
movie shared in the first benchmark. The answer has two pgérss; the movie window used in

20

N
w

= =x= =Change detection - Sender
—*— Change detection - Receiver
—<&— Everything - Sender

— —#— — Everything - Receiver

[
w

Frames per second
N

-

o
&)

2 3 4
Windows

Figure 14: Graph showing how FPS varies with number of sharedows and update method.

the first benchmark was never static (except for maybe a bbapikels in addition to the static
window decorations and widgets), so updates were congtheihg sent. To contrast this, the
text edit window rarely changed much, except when actiorre werformed in the window. The
second part of the answer lies in background load. With a enplaying in the background,
less CPU power is available to perform the change detecfionillustrate the impact of this,
the movie window was shared a second time, using changetidetelout this timewithoutthe
movie playing. With one subscriber, both sharer and subscrieached an FPS of about 13.7.
During the test, the movie was being jumped through by drag@iuickTime'’s time-line slider
to different points, producing changes in the window.

This explains how the FPS seen in the graph can be better tlbae bbserved in the first
benchmark, and also illustrates how the contents of the avindnd the background load can
affect performance. As the graph also shows, sharing a laiggow by constantly sending
everything can be a recipe for bad performance. Delay betwegon in the local window and
appearance in the remote window was also a problem in thés(sae below).

As the number of shared windows increases, the performdrtbe system keeps dropping.
Change detection doesn’'t do much for the movie windows, blgast manages to keep the
bandwidth overhead from sharing the two mostly-static wimsllow. Unfortunately, at this point
the change detection requires so much time to completettiavastates the number of FPS the
sharer is capable of delivering, while also being in comjgetiwith two playing QuickTime
movies for processor time. A good way to improve on this wdwddo allow different update
modes for different windows - technically not a problem, th interface for WPublish does not
give the user the ability to make this distinction yet.

When change detection isn’t enabled, the drops in framarateaused mainly by the work
needed to constantly copy the windows and push them ontoetteeork. Since the windows in
this case are much bigger, the total amount of data that rtedats transferred is much greater

21

than what was needed for the first benchmark, explainingotier framerate's.

The next benchmark examines how the local-mode and sendamglses changes the per-
formance of the window sharing system, again using the fiegtipg movie as the shared win-
dow. The two tests were:

1. Local-mode disabled

2. Scan-line mode disabled

—a— Local-mode off (Sharer)
— —x— —Local-mode off (Receiver)
---X---Scan-line off (Sharer)
—&— Scan-line off (Receiver)

Frames per second
[9;]

Subscribers

Figure 15: Graph showing how FPS varies the various optitioiza disabled.

When local-mode is disabled, both sharer- and receivesrabd FPS drops, and quite con-
siderably too (see Figure 15). What is not visible from thesilts, however, is how big the
impact is on the “feel” of the shared windows. The problentMdtcal-mode is that it gets rid of
packets too quickly - so fast, that the congestion-avoidaptimization only works at irregular
intervals when the network becomes heavily congested. fitieasult is that the subscribers see
frequent freezes and time skips, whereas without localentite frame rate drops slightly, but
the perceived frame rate is much more constant. For one csutyscribers, local-mode is a win,
but once more subscribers enter the loop, local-mode is mgeloa good optimization for the
task of window sharing.

When scan-lines were disabled and entire areas were se¢eadngwo things happened.
First, the sharer- and receiver-observed FPS soared wleeor two subscribers were connected.
Performance walsetterthan what could be observed when scan-lines were enableéduapris-
ingly, out-performed all the other configurations. At thaients, however, things started looking

15The total area shared is 2205x2003 pixels, equating abouBL@f data requiring transfer as often as possible, com-
pared to 400x401 (times 4 subscribers) = 1600x1604 pixeshout 10 MB. These amounts of data can clearly saturate
a 100 MBIt ethernet network. Note though that these figureaatdactor in the gains from using RLE compression,
which is always enabled.

22

down, although this is hard to observe just from looking atgraph. The number of FPS took
a drop, but the performance compared with what was obsenvidiprevious benchmarks was
horrible - in some cases, the picture on screen lagged béénactual window with more than

30 seconds, catching up from time to time before freezing Jituation didn’t get better when

the number of clients were increased to four, leading to eveater delays.

The conclusion that can be drawn from this is that while doss may decrease performance
in some cases, they aid in promoting fairness. Second, tiedyedter suited for the congestion-
avoidance optimization.

In order to investigate whether the congestion-avoidaptienization would work better with
local-mode disabled, the scan-line test was performed orare without local-mode. These
results were considerably better - with 4 subscribersaspported at a steady 7.41 FPS. The
average FPS observed by the receivers was 5.72, and mostamibg the update frequency at
the subscriber end was steady, without the freezes obsianthd previous experiment. While
this is uplifting, the window still lagged 12 seconds behihe window on the sharing computer,
once again reinforcing the merit of the scan-line approach.

These results make it interesting to examine exactly by hawhthe remote windows lag
behind the real window, located on the sharing user’s coaerpwhen the remote user is interact-
ing with the shared window. In order to get an approximaterege of the latency from action on
the remote computer, until the result is visible to the remeter(s), the following strategy was
used: A text editing window, sized at 431x347 pixels, wasatiasing change detection with a
target FPS of 15. Since change detection was used, no reflrestages are sent unless there is a
change in the window. Thus, when text is entered remotedyreéfresh messages resulting from
this are taken to be an implicit acknowledgement of the espasted from the remote computer.
This does not produce an exact estimate in general, but wegksor a window shared using
change detection, and where “unprovoked” changes thatamritaminate the measurements
rarely or never occur.

The period of time measured is the time between the momem Wigeevent is queued re-
motely, and the moment when the next refresh message hapbmmessed at the remote end.
Importantly, this includes the time it takes to display thr&sh message, an important factor for
interactivity. Measurements that are more than 10 timestinent average are discarded. As-
suming the change detection is able to run 15 times pr setioadpaximum theoretical latency
is (ideally) 66 ms (with no overhead from the network, ete)d ¢he average can be expected to
lie at 33 ms. The setup can be seen in Figure 16.

The results from this test were as expected from the inteeagerformance observed during
the test, where the text appeared “instantaneously” as stewdered remotely. The average
measured latency was 10 ms, with the minimum observed hatant.2 ms, and the maximum
observed latency at 35.4 ms. The maximfittered sample was 944 ms, which is clearly an
unreasonable value. The results compare favourably wéhtboretical figures. The reason
why the measured average is better than the theoreticageenay be due to the filtering being
performed. When filtering was disabled, the average endeat Bp ms, which is more in tune
with the expected average, but the measurements appeaskewed by a few samples that end
up having ridiculously high latency values. This may be afidation that the filtering is flawed
(even though it makes good statistical sense to ignore erlgas weight to samples that lie far
away from the current measurement averages), or that theochesed to measure the latency
has problems. The spikes can also be explained by intermittad on one of the computers.

The final benchmark simply aimed at measuring the bandwisitige for sharing a window,
when either using change detection, or sending everythihg. scenario is almost the same as
in the first benchmark, with number of subscribers rangingfone to four, but only sharing the
window for one minute.

As is evident from Figure 17, the bandwidth usage is increpnearly with the number of

23

User creates event

1. Start 2. Queue > 3. Transfer 8. Receive X 9. Draw N 10. Stop
timer event msg message refresh refresh (timer)

Subscriber

Sharer

4. Receive 5. Post 6. Detect 7. Broadcast

message event changes refresh

Change detection timer fires

AN

Figure 16: Setup for measuring remotely observed latengyosting events.

subscribers. The number of frames delivered doesn't seatécaly, but this is likely due to the
changing behaviour of the congestion-avoidance mechafitisnay decide to remove an entire
frame from the output queue, which will lower the FPS count, frevent congestion so that
further updates will go through without dropping scan-ine

A second figure of interest related to bandwidth, is the axiprate bandwidth savings pro-
vided by the change detection update method. One frame tlsngend-everything approach
averaged 0.52 MB, while a frame using change detection averaged 0.39 MB. € bagings
must be seen in light of the radically lower FPS provided l®yd¢hange detection, however.

It is difficult to determine why the available bandwidth ishirther utilized when the send-
everything test reaches 4 subscribers. One possible atfdanis background traffic on the
network, preventing WPublish from reaching the networléalpbandwidth, though in repeated
tests this did not appear to be the case. Another possilslttyat WPublish isn't able to deliver
the amount of data needed to saturate the network, and fithedlynost likely explanation is
that the congestion-avoidance mechanism is acting preaigtutemoving data from the output
gueue before it is strictly necessary.

6.1 Improving performance further

As these benchmarks were made using a fairly unoptimizesioreof both the WPublish ap-
plication and the LinuxW\Cl i ent, there is still room for improvement, both algorithmically
and in the implementation. To determine areas that couldopsienization in WPublish, the

16The reason this is lower than the expected frame size of 0.B1(400x401 pixels at 4 bytes each) is partially
due to RLE compression, but mostly due to the congestioeetieh mechanism, which should account for most of the
“missing” data.

24

Megabytes per second

2 3 4
Subscribers

[—a—Change detection — —x— -Everything |

Frames received

u
=]
=]

IS
a
=]

a
I=}
k=

w
a
=]

w
b=
o

N
a
o

N
o
=1

H
u
=]

i
o
1=

o
=]

o

2 3
Subscribers

—a&— Change detection — —X— - Everything

Figure 17: Graphs showing MB/s and number of frames received

Apple-provided profiler Shark was used to determine paaéhbdt spots in the WPublish imple-
mentation.

Shark pointed at a number of areas where performance coddhznced. Not surprisingly,
the congestion-avoidance function consumed much time sesahere the output queue was
long. As the congestion-avoidance mechanism works by ¢hgaach submitted rectangle
against all the other rectangles in the output queue, itsristhgnic complexity at first glance
appeatrs to be linear. However, since we usually submit Boas; and the congestion-avoidance
mechanism is invoked once for every rectangle submitteddatieue, it becomes clear that the
useof the algorithm is anything but linear. This algorithm camfbrther tuned, and enhanced
by using a different data structure, such as a tree, for thelaw refresh messages (though this
would not integrate well with the current queue-based I/@ma@isms implemented).

A second area concerns the rectangle management routinies, work well for small num-
bers of rectangles, but are unsuitable when the managezhgées are many and small. The
main performance offenders are recursion, list traveimatsthe overhead from object messag-
ing. Taking a different approach, such as the bitmap schesad in VNC, could definitely
improve performance in cases where change detection isars@dsurface that changes a lot
very frequently.

Much time is also spent fetching a copy of the shared windgi&ls. Although it's not
possible to optimize the functions provided by the opegasiystem, an attempt to optimize their
use further can be made. For instance, it is not clear whetleermage handle needs to be
refreshed every time an attempt to access a window’s pigeaisaide, or if it is possible to use
the one already available. Figuring this out would requatgrtg a second look at the SPI that
provides the image handle.

For the platform independel{Cl i ent , the most eligible candidate for optimization is the
drawing routine. Currently, the drawing is more functiotien optimized for speed, something
that is very visible when sending scan-lines instead ofeméictangles. Once a refresh message
has been received, it will be decompressed and immediatalyrdto screen. A better approach
would be to defer the actual screen update, potentiallyraatating more scan-lines that can all

25

be drawn in one go.

On a higher level, it should be investigated if there is a raguhth between sending scan-
lines, and sending entire areas, and if so, determine wherpdak performance between these
two approaches lie. In such an endeavour, there are margrdeaot consider, such as message
overhead, delay between message send and the time it is teeddydrawn remotely, how the
solution integrates with the congestion-avoidance codd, lastly if it works well with both
sending everything, and doing change detection.

The ultimate speed-limiting factor, however, is how fagt lublisher is able to detect and
send updates. If the publisher is able to saturate the nkepitaan be assumed that updates are
being delivered as fast as possible. At this point, othettdiatcks should be easier to detect, and
optimize or work around.

7 Limitations and futurework

While the prototype implementation works well, it currgntinly allows sharing of windows
from MacOS X. In order to be complete, implementations sthdna written for the X Window
System and Microsoft Windows environments as well. Thefgiat independent\C i ent
works well on X11, but is lacking in ease of use and in that &sitt have &\Bhar e counterpart.
Minor changes to the networking code will be needed in orlardke the client run on Windows.

Coordinating multiple users’ input to a single shared windéioor control) also needs fur-
ther work, and in trying to look at possible solutions, a midesign flaw in the resource sharing
base layer was uncovered. The flaw resides in the fact thsihitpossible for the sharing peer to
send messages to specific subscribers, unless the mesaagplisto a message initiated by one
of the subscribers. This in turn implies that peers shouwle ls@me abstract identifier associated
with them, to allow for more involved message exchangesebhy the resource server.

A rather big limitation with the current MacOS X implemeridatt is that it does not allow
for posting events to all windows (or any windows, dependinghe whether the user will allow
the installation of a small patch or not) - the set of “wrilblvindows is limited to applications
written in Cocoa. While this is a problem, it is difficult to fixithout knowing in detail how
the window server sends events to applications. A comphepdeimentation of this has been
left for future work. The main use of sharing information kvitthers still makes the MacOS
X implementation useful, however. A second limitation iattkvindows utilizing an overlay to
have the video hardware composite their contents for thera haiseless backbuffer filled with
the overlay color, giving unexpected results on the rengiends. This is especially a problem
when sharing movies, as the technique is most commonly ustbése applicatiodé

Finally, the current implementation of tHRShar e server does not support Server-Server
connections (see Figure 4).

8 Related work

There already exist a number of solutions for sharing eidimeentire desktop or individual ap-
plications with other users. VNC encompasses a humber dtajesharing applications, all
based upon the VNC protocol, including a number of free, cqmemce versions. VNC is limited
in that it only shares pixels visible on the display - whileveimplementations allow sharing
only a part of the display, it is still only the pixels that axetually visible that will be shared.
This contrasts with the window sharing prototype in thatgh&totype does not require that the
window is actually visible in order to share it with other tsethus allowing the sharing user

7In Apple’s DVD Player, it's even being “abused” to preventesmshots being made from the movie.

26

to keep working with her entire display, without having torwyoabout moving sensitive data
into some “shared region.” Other solutions include Appld dficrosoft's own OS-dependent
implementations, sharing only the desktop with other coensu

QuiX (later renamed to MaX) [1] is an application that workishaolder versions of MacOS
(presumably System 7.5 and earlier) to facilitate appbicasharing between what was then
known as System 7 and the X Window System. It serves as an éxaimpwing that developing
a protocol-based sharing solution has merit, but requanegelamounts of work to complete, as
it translates QuickDra¥f drawing operations into X protocol drawing operations.sTiiclearly
different from the approach taken by the prototype, whidrsh pixels, not drawing operations.

Microsoft's Messenger and their older NetMeeting softwals® support application sharing,
but only work between computers running the Windows opegatiystem. They differ from the
prototype in that they share an entire application, andeir t,ependence on the Windows OS.
In addition, to use Messenger, users are required to “sgjrmith Microsoft in order to get a
“passport,” a significant disadvantage for the privacyemsned. The window sharing prototype
does not share an entire application, only windows belanginan application - this is an im-
portant difference, as it implies that while a shared ajaiitie can pop up a dialog related to a
window, this dialog will only pop up on the local computertysen, not on any remote peers’
screens. Sharing a single window in this way can be considgitker an inherent weakness or
an inherent strength, depending on one’s point of view.

For the X Window System, there exist a number of packagesallav one to share X11
applications. The packages usually do this either by windeplication or window migration,
and the most common implementation technique uses a psauder sitting between the “host”
X server and the X clients that are to be shared, althoughr @ibssibilities exist. Sharing
windows or applications on X at the protocol level presentaimber of problems [2], as the
X11 protocol wasn't written with multiple clients in mind. &4t of these are related to different
server characteristics (depth, resolution, etc.), antllpros translating sequence numbers.

There have been many attempts at writing applications thaft chultiplexing (in essence,
application sharing for X11) [3]. Two examples here are Xpte[4] and XTV [5]. These
applications both attempt to replicate the windows on XIrbs& multiple different X servers.
Unfortunately, these and other applications replicatirigdews on X11 tend to be out-of-date
and lack support for newer X11 servers or clients. Many ofrttege also riddled with bugs,
making them unusable in practice. Finally, the X serversrofteed to be configured similarly in
order for the replication to succeed acceptably.

Xmove [6] is an application that uses the second approachimdow migration. It uses
a pseudo-server to record information that is later usedchveheequest is received to migrate
an application’s windows from one X server to another. Thpragch works fairly well, but
is limited in that it lacks compatibility with some X applitans using more or less esoteric
X extensions, and is failure prone when X servers suppodifigrent extension sets are used.
Xmove differs from the window sharing prototype in its degence on X11, and the fact that
it doesn’t actually share windows, only migrate them. Itslgeprovide the granularity that the
prototype offers either, as an entire application is moved,individual windows - a problem
shared with most other X multiplexing solutions as well.

9 Conclusions

A working window sharing prototype has been developed,dhatvs MacOS X users to share
their windows with other users on different platforms. Wseray interact with the shared win-
dows, with some limitations, and the interface for sharingdews is intuitive and easy to use.

18The low-level drawing toolkit supported by legacy MacOS.

27

Windows can both be pushed to a large shared surface, odpwleisers wanting to see the
shared windows, depending on how the system has been ddploye

The performance of the system is limited by how often theiaggreers do change detection
on the shared windows, the available processing power ammbwrcapable the underlying net-
work is. The user experience when operating a remote wind@xdellent, with response times
generally in the 10-35 ms range, depending on the size offtheed window, and how often
change detection is performed.

The system should scale well, up to the point where the shaser is unable to send updates
to all the subscribers, or no longer has enough processingrdocally to handle change detec-
tion on many shared windows. Depending on the content bdiaged, this limit can be high
or low - using change detection on a mostly static window alibw the window to be shared
with many users, whereas a constantly changing window beongpletely updated as often as
possible will limit the number of subscribers to at most 5 oABother limiting factor is the size
of the window.

The protocol that was developed for sharing resources weelsapart from the weakness in
its lack of directly addressable peers. This weakness wilyrenly prevents the development of
proper floor control for the window sharing aspect of resewttaring, and does not substantially
detract from the overall working of the system. The windowargfg protocol also performs well,
and offers good room for future improvements, both in terfbkaw frames are encoded, and
how updates are sent (scan-lines, blocks, etc.).

The window sharing system as it stands now is fully usablsfi@ring windows from com-
puters running MacOS X to other computers, supporting digoevery of other users to make
finding shared windows as easy as possible. The underlyattecture has good room for fur-
ther expansion, both for sharing windows and other resgupr®viding a good foundation for
further enhancements and research.

10 Acknowledgements

Thanks to Otto J. Anshus, John Markus Bjgrndalen, Kai Li anahGWallace, for their ideas,
suggestions, discussions and support. Thanks also go #atrt@sunnar Aarsaether for giving
an outside perspective on the system and criticizing théementation when it wasn’t working

properly.

References

[1] Klaus H. Wolf, Konrad Froitzheim, and Peter Schulthedsitimedia application sharing in
a heterogeneous environment. AGM Multimedia 95 - Electronic Proceedingdune 5.-9.
1995. http://www-vs.informatik.uni-ulm.de:81/Pap&GSM95/QM.html.

[2] Hussein Abdel-Wahab and Kevin Jeffay. Issues, problantssolutions in sharing X clients
on multiple displays.

[3] J.E. Baldeschwieler, T. Gutekunst, and B. Plattner. A/ey of X protocol multiplexors.
ACM Computer Communication Revie23(1), April 1993.

[4] W. Minenko. The application sharing technolo@he X Advisory1(1), June 1995.

[5] H. Abdel-Wahab and M. Feit. XTV: A framework for sharingwindow clients in remote
synchrounous collaboration. IEEE Tricomm, April 1991.

28

[6] Ethan Solomita, James Kempf, and Dan Duchamp. XMove: dudsserver for X window
movement.The X Resourcel1(1):143-170, 1994.

[7] The Objective-C Programming Language Apple Computer, Inc., February 2004.
http://developer.apple.com/documentation/Cocoa/€Eptual/Objective C/ObjC.pdf.

A A brief introduction to Cocoa and Objective-C

Cococa is the preferred API to target when writing applaagifor MacOS X, and allows the use
of either Objective-C or Java as the programming languabes dppendix is intended to give a
brief insight into how a MacOS X Cocoa application is develdpwith the aim of making the
code for WPublish and WAccess easier to understand.

A.1 Objective-C

This section deals with the Objective-C programming larggyand is in no way intended to be
comprehensive. For a more detailed introduction, see [[7¢. @bjective-C language evolved as a
fusion between C and concepts from Smalltalk. It makes alsmaiber of syntactical changes
to the C language, allowing one to create object-orientediagions. Objective-C revolves
around the object and messaging concepts. An object is gmlertion of methods and instance
variables, possibly inheriting from a class higher up indlass hierarchy. Objects communicate
by sending messages to each other - roughly equivalent ttidtninvocation, but implemented
as “true” message sends, yielding much greater flexibility.

The syntax used to send a message to an object is:

[recei ver nessage];

Where themessage part consists of the method name, and any variables. OlgeCti
supports named variables, though their use isn't mandataryexample from the WPublish
code:

[scr_view connect:servers[srv_idx] res_id:resources[rsrc_idx]];

This sends a message to the obgct _vi ew, invoking the method¢ onnect : res_i d:
with the parameterser ver s[srv_i dx] andresources[rsrc_i dx]. An object can
send a message to itself by sending a message to the ebjett which is similar to the hi s
pointer in C++.

Objective-C supports dynamic typing, which among otherdhiallows sending of messages
to objects whose type isn’t known. The message sending mehavill inspect the object, and
determine if the selectdt being used is supported, and if so, forward the message &his
makes it possible for the following line to work, regardlegsvhat kind of object is contained in
thedat a pointer (assuming that the object implementsghecess_nsg: method):

rshare_result message_avai |l _cal | back(voi d *data) ({
[(id)data process_nsg: 0];
return kKRS_Success;

The cast ta d, which is the generic Objective-C object type, allows onmtke an attempt
at sending the message to ith&t a object (assuming it is an object, of course). If the method
doesn't exist, the runtime will raise an exception, but liguallow the program to continue
executing.

Objective-C has many other features, but these will not heeddurther into here.

19A selector can be thought of as the “signature” of a methodsisting of the method name, its named variables and
their types in a form defined by the compiler.

29

A.2 Cocoaand Interface Builder

Cocoa is designed around the Model-View-Controller (MV@jgaligm, where (at least concep-
tually) every object has one model (providing the data) esnishowing one of potentially many
different views of the data) and a controller (which handkésgs like adding data to the model,
user interaction, etc).

The user interface for most Cocoa applications are created) A\pple’s Interface Builder
tool. The tool allows the developer to construct the intafaisually, using objects from Co-
coa as its building blocks. The interface is stored inra b file, which in reality contains
flattened Cocoa objects. When the application starts, tjextsbare “revived,” and receive an
awakeFr omNi b message from the Cocoa runtime.

As Interface Builder allows the developer to construct angart classes of her own, these
classes can also be used in constructing the interface. S3ritiating controller objectd con-
nections can be made between objects in the interface, gadt®bontrolling the interface. For
instance, a button can be connected to an action method inteolter class - this is done in
WPublish, when the Add server button is clicked. The buttmds a message to its “target,”
specifying itself as the sender. WPublish receives the agessand deals with it accordingly by
allowing the user to add a server.

In addition, connections can be made the other way, by spegifoutlets.” Outlets are just
a convenient way of hooking a class up with objects in the imserface, allowing the controlling
class to perform additional initialization when it recesvbeawakeFr omNi b message. This
can be thought of as assigning an object to an instance \anathe controller’'s implementation.
A common outlet would be a text field that contains some sostatiis message. The interface
for both connecting actions and outlets in Interface Buiidesimply to control-drag from one
object to another, specifying whether the connection iscéinor an outlet.

B Sourcecode

This appendix contains all the source code developed asopéine window sharing system.

Please note that while some effort has been made to makefiliveithin the “standard” page

margins, this style has not been used everywhere, as theraurtifers source code with longer

lines. For best viewing, the digital copies should be stiidrgth the tab length set to 4 spaces.
Note: Source listing has been omitted for the online versiahis paper.

20Any object can be instantiated. The use of “controller” hisrenly an example - the WPublismi b file contains
both instantiated controller objects, and instantiateswabjects.

30

