The Open-ORB Python Prototype API*

Anders Andersen
NORUT IT
aa@onputer.org

October 1999

Abstract 1 Introduction

This note gives an introduction to the Applical h® Open-ORB Python Prototype (OOPP) is based
tion Programming Interface (API) of the Open-ORE" the middleware arghltecture under devel_opmgnt
Python Prototype (OOPP). OOPP is based on tifeth® Open-ORB project at Lancaster University
middleware architecture under development in t&l- This architecture tries to solve the problems of
Open-ORB project at Lancaster University. Operil€ black-box philosophy of traditional middleware.
ORB is a reflective component-based middlewafd!® requirements from a wide range of applications
platform. Traditionally, middleware mask out thdhat need support for (i) multimedia, (ii) real-time,
problems of heterogeneity and distribution. How?nd (iii) mobility can be fulfilled by an open en-
ever, a wide range of new and existing applicatioé1€ering approach in the design of a middleware
require the possibilty to configure the support pr&latiorm [2]. Open-ORB provides this openness in
vided and to inspect and adapt this support at ry@Principled way (as opposed to ad hoc) through the

time. Open-ORB provides this openess through tgancept of reflection. A more detailed discussion
concept of refelction. related to OOPP can be foundin [3]. OOPP is avail-

able from Starship Pythfin
Table[1 describes the different arguments and re-
turn values used in the descriptions of the interfaces

Contents (functions, methods, constructors and so on) in the
following text.
[L_Introduction 1
| .] . 2 Programming structures
2.1 Interfaces and local bindidgs bopp provides a set of basic programming struc-
22 Components. 3ures for the programmer. These structures are influ-
2.3 Binding objects 4enced by the computational viewpoint of the Open
Distributed Processing Reference Model (RM-
3 |nfrastructuré 4 ODP) [4].
Bl Capsulds. 4
B2 Nameservers 2.1 Interfacesand local bindings
An interface of an object defines a subset of the in-
[4_Meta-models 6 teractions of that object [5]. A method call to a
4.1 Encapsulation 6method of the object and a method call from the ob-
4.2 _Composition gject (to a method of another object) are examples of
such interactions. Different interface types for oper-
[5 QoS management g ational methods, signals and streams are available.
B1 Rol&So The operational mt_erface type is the basic interface
E2 Automala type that all other interface types are based on. It
""""""" provides a set of exported and imported methods
*NORUT IT Report IT302/2-99 Ihttp://starshi p. pyt hon. net/ crew ander s/ oopp/

http://starship.python.net/crew/anders/oopp/

Interface references
List of interface references
Local binding control object

| . breakBi ndi ng()
|.reBind(i,j)
|.reBi ndoneVay(i,j)

o] Object instance

c,d Component instances | Ref is the class used to create interfaces and
uv Unique component identifier | ocal Bi nd is a function that creates a local bind-
C Classorfactory ing between two interfaces. The interfaces and the
P.a C.apSU|e proxy (or cgpsule) local binding between objeatandb in Figurel are
[p] Listof capsule proxies .) -

n Name server proxy created with the following Python code:

alir ﬁny value/result i = IRef(a ["f"],[]) L

ey or name A e

m Method name J B PRef (b, [1,T"F"1) ’
[mM List of methods I = l ocal Bind(i,j) :
[n] Listof methods r=1i.1(2) ¢

f Method implementation The arguments to théRef constructor is (i)

t Argument tuple . .. S

w Argument dictionary the op!ect, (ii) the.de.scrlptl_on of exported methods
e Meta-object and (iii) the description of imported meth@dShe

L Any list | ocal Bi nd function returns a local binding con-
DE Any dictionaries trol object that can be used to control the local bind-
x* x is optional ing. A local binding only exists as cross-references

in the interfaces bound. A local binding can be bro-
ken with thebr eak Bi ndi ng function or with the

br eakBi ndi ng method of the local binding con-
trol object. The following code illustrates these two
methods for the example above (select one):

Table 1: Attributes in interface descriptions

br eakBi ndi ng(i,j) 1
| . br eakBi ndi ng() 2

It is possible to create a one-way local binding
with the | ocal Bi ndOneWay function. The se-
mantics are that a connection is made from the
imported methods of one interface to the exported
methods of the other interface andt vice versa.

A local binding control object representing a broken
and itis associated with a given object. An exportasinding can be used to create a new local binding
method of an object is a method of that object maggth ther eBi nd andr eBi ndOneWay methods.
available through an interface. An imported method Specialised stream and signal interfaces are also
of an object is an external method made available4@ailable (see thesi gbi nd and st r eanbi nd

the object through an interface. module below). These interfaces have a source and

A local binding is an establishing behaviour bea sink pair. A local binding between a source and a
tween two interfaces. A local binding connects theink can be created with theocal Bi nd function.
exported method of one interface to the importethe code below creates a stream interface reference
method of another interface and vice versa. The twource and sink pair and makes a local binding be-
objectsa andb in Figure[1 have an interfacés tween them. The source interface is associated with
and an interfacg , respectively. Interface andj objecta and the sink interface is associated with ob-
are bound with a local binding. Objebtcan call jectb:
methodf of objecta through its interfacg .

a b

Figure 1: A local binding

The following services for interfaces and local ~ S'¢ = StreanfrclRef (a) L
bindings are provided by tHebi nd module: sink = StreanSi nkl Ref (b) 2
| = local Bi nd(src, sink) 3

I Ref (o,[m,[n])—i src. put (dat a) 4

| ocal Bi nd(i,j)—l
| ocal Bi ndOneVay(i,j) —l
br eakBi ndi ng(i,j)

2In this prototype the descriptions of exported and imported
methods are lists of method names. This can be extended with
an interface description language like the CORBA IDL.

A stream interface usesmut method with one
data argument. Objedd in the example above
implements theput method. A signal interface
pair is created with theSi gSrcl Ref and the
Si gSi nkl Ref classes. The signal source inter-
face provides (exports) aevent method without
any arguments.

"in " out w

"ainm "ao""phi" "bHho"

2.2 Components

A component is a unit of independent deployment
[6]. They are developed and delivered indepen-
dently and provide access to their requested and pro-
vided services (methods) through one or more spec-
ified interfaces. All interactions between compo-
nents are specified through these well defined inter-A composite component is a way to manage a
faces. Such an interface connection architecture feasnplex component. In particular, a composite
a basic conformance criteria that says that the sy®mponent encapsulates a graph of components.
tem’s components interacts only as specified in thdihe outside view of a composite component is sim-
interfaces(|7]. ilar to a primitive component: it provides a set of
The interfaces of a component are available witinterfaces that can be browsed and accessed through
out any previous knowledge about the componethieir keys (names). Figufd 2 illustrates a simple
providing them. The interfaces provided can b@&mposite componegd providing the external in-
browsed and a specific interface can be accessedaces'i n" and" out". It contains two compo-
by its key (name). A primitive component thanhentsca andcb connected with a local binding be-
encapsulates one object and provides/requests taen their interfaceao” and" bi ". The exter-
cess to/from its object through a set of intemal interface'i n" is a mapping to interfacéai "
faces can be created with tf@nponent class in componenta and the external interfaceout "
or the conponent Fact ory factory from the is a mapping to interfaceébo" in componentb.

Figure 2: A composite component

conponent module: Composite components can be created
with the generic Conposite class or the
Conponent (D, 0) —c generic conposi t eFact ory factory from the
conponent Factory(L, C t*, w*) —c conposi t e module:

Conposite(D, E, a*) —c

A component for objeca in the example above :
conposi teFactory(D, E, a*) —c

can be created with the following statement:

The first argument of th€onposi t e class con-
structor is the external interfaces of the component
]]] and the second specifies the component graph. The

The result is a componegta with an interface component graph is specified by the components
with I_<ey "op" represented by the interface refersgntained in the composite componeht 6nps”),
encei that exports the methotl. The compo- the set of internal interfacesi(i f) and the set of
nent encapsulates objexthat implements methodgyges (local bindings) between these internal inter-
f. The interfaces of a component are availabjgqeg { edges"). The composite componenb

in the i nt er faces attribute of the component.ghoye was created with the following statement:
Interface” op" of ca can be accessed with the

ca = Conponent ({"op":i}, a)

ca.interfaces["op"] expression. co = Conposit e(1
A classA has a constructor with no arguments that {"in":(ca,"ai"), 2
creates an object with an interface in attributeA "out":(ch,"bo")}, 3
component with an interface with kéy " can the {"conps":[ca,cb], 4
be created with the following statement: "iif":{"ao0":(ca, "ao"), 5
"bi":(cb,"bi")}, 6

ca = conponentFactory(["i"],A): "edges":[("a0","bi")]}) 7

The Conposite class and Thesi gBi nd function creates a (remote) signal
conposi t eFactory factory can be used tobinding between a signal source interface and a sig-
create any composite component. The result isnal sink interface.
fairly complex constructor syntax. A composite The stream binding provided by OOPP does not
component class or factory is usually a refinemeptovide any retransmission, sequencing or buffer-
of the generic composite class and factory witing. Every data frame fed in to it from the source
an less complex constructor syntax. The bindirgide will be delivered as quickly as possible to the
objects discussed below are created with susimk side. However, this approach is too simple for

refined classes or factories. many applications that need a more advanced stream
binding. The stream binding provided, however, can
2.3 Binding objects be used as a starting point for the creation of a bind-

ing with the features needed for the given applica-
Local bindings can only be used between interfacgsn. Stream bindings can be created with the con-
in the same address space (see capsule below)sthctor of theSt r eanBi ndi ng class, but as ar-
contrast, binding objects can be used to create binflred above for enot eBi nd they can more eas-
ings between interfaces in different address spagigsbe created and installed with ttst r eanBi nd
or even on different nodes. An operational bindin@inction. Thest r eanbi nd module provides the
is meant to replace a local binding in such cases. Agllowing classes and functions:
operational binding is a specialised composite com-
ponent called a binding object|[8]. Binding objects Streantr cl Ref (0) —i
for streams and signals are also available in OOPP. Streanti nkl Ref (0) —i
An operational binding can be created with the con- St r eanBi ndi ng(p, g, a") —c
structor of theOpBi ndi ng class or created and in- ~ streanBind(i,j,a") —c
stalled with ther enot eBi nd function (both from

theopbi nd module): The streanBi nd function creates a stream

binding between a stream source interface and a
OpBi ndi ng(i,j,a") —c stream sink interface. The following code creates
renot eBi nd(i,j,a*) —c a stream binding between the stream source inter-

facesr ¢ and the stream sink interfagg nk and

. The differen(;e b_etween this class and funCtiQHen sends 100 data frames through the binding to
is that theQpBi ndi ng constructor only createsthe sink:

the binding object while the enot eBi nd func-

tion also binds the external interfaces of the bind- |, = streanBi nd(src, si nk) 1
ing object to the two interfaces to be bound (inthe for i in range(100): 2
same way akocal Bi nd binds two bindings to be src. put (datafi]) 3

bound). Object with interfacei in capsuleA ex-

ports its method . Objectb in capsuleB with inter-

facej imports method . The following code cre- 3 | nfrastructure

ates an operational binding between interfaand

j and then calls methoid of objecta in capsuleA The infrastructure is a supporting environment for
through interface in capsuleB: programs in OOPP. The infrastructure is influenced
by the engineering viewpoint of RM-ODP][8], but
the engineering viewpoint of RM-ODP is also re-
lated to the meta-models in OOPP (see seciion 4).

b renot eBi nd(i,j) 1
r =j.f(2) 2

A signal binding can be created with the construc-
tor of theSi gBi ndi ng class, but as argued abov8.1 Capsules

for r enot eBi nd they can more easily be created h add . . led b
and installed with thesi gBi nd function. The Each address space in OOPP is controlied by a

si gbi nd module provides the following classe§apSUIe‘ A capsule provides services for its local
and functions: components (the components located in the address
' space it controls). It can also provide services to re-

Si gSrcl Ref (0) —i mote components through a capsule proxy. A cap-
Si gSi nkl Ref (0) —i sule proxy and a local capsule have identical in-

Si gBi ndi ng(p, g, a*) —c terfaces, but the requests through a capsule proxy
sigBind(i,j,a*)—c are forwarded to the capsule it represents and the

replies are returned back to the caller through theThe get | Ref service of a capsule returns a
proxy. The local capsule is available through thglobal interface reference. In the example above is
| ocal attribute of thecapsul e module and a cap- the interface reference of interfaté " in compo-
sule proxy for a remote capsule is created with thentu returned. Theget | Ref service of a capsule
Capsul ePr oxy class:

Capsul eProxy(a, r) —p

should always be used when a global interface ref-
erence of a registered componentis neBded

The capsule also provides services to establish
and break a local binding in the capsule. These ser-

The following services are provided by a capsuldces are useful when a local binding in a remote
(and a capsule proxy):

.serve()

.servet hread()

. stopserve()

. regi st er Conponent (c) —u

nkConponent (C, t *, w*) —u
r cpConponent (u, p) —v
mvConponent (u, p) —v

del Conponent (u)

. get | Ref (u, k) —i

.local Bind(i,j)—l

.l ocal Bi ndOneVay(i,j) —l

. breakBi ndi ng(i,j)

.call Method(u, k, mt~*, w) —r*
.announceMet hod(u, k, mt*, w")
.announceThread(u, k, mt~*, w")
. sendMet hod(u, k, mt™*, w*) —a
.recvMet hod(a) —r*

. newport (a) —r

. del port(r)

capsule has to be established or broken. The request
is then done through a capsule proxy.

Thecal | Met hod service of an capsule is a low-
level method used to call a specific method in an
interface of a registered component. This service
is meant for implementing higher level bindings or
services. The application programmer should use
a binding object to establish a connection between
two interfaces and call the remote method through
the interfaces and the binding.

The following code illustrates the difference be-
tween usingcal | Met hod (line 1) and a opera-
tional binding (line 4). Method is in both cases
called with an argumer an the result is saved in
r:

r = callMethod(u,"i","f",(2,))1
i = p.getlRef(u,"i") 2
b = remoteBind(i,j) 3
r =j.f(2) 4

The capsule also provides other low-level meth-
ods not listed above. This includes announcements

A componenthas to be registered in the capsulerttethod calls, asynchronous method calls and ser-

be available for the services provided. A componevites to duplicate and move components. A capsule

created with therkk Conponent method of the cap- proxy can only be used to access a capsule if this

sule will automatically be registered in the capsuleapsule has started its serving loop. This has to be

Ther egi st er Conmponent andnkConponent done explicitly with theser ve method of the local

methods return a local unigue identifier for the conzapsule.

ponent (unique in the capsule). This identifier to-

gether with a capsule proxy provides a global ide%—z Name servers

tification of a component. The code below uses &

capsule proxy to create an instance of the compoA name service is needed to make it possible for

nent classC in a remote capsule (the constructor afomponents in different capsules to interact. The

classCis called without any arguments). The resufimple name service provided in OOPP is imple-

is a component with the unique identifier It then mented with a name server. Interfaces and capsules

creates an operational binding between the local ifan be registered by a key (name) in such a name

terfacej and the remote interfade of component server. The name server is accessed through a name

u. Itis then possible to call methddof the remote server proxy. A name server proxy for a given name

componentl through the interface referenge server can be created with the knowledge of the lo-
cation (the node) of the name server and the port the

u = p. nkConponent (C) 1

i = p.getlRef(u,"i") » 3A global interface reference is useful outside the locasatgoof
_ . . the interface. It contains a ‘unique component identifieapgsule

b = renoteBind(i,]) s proxy’ pair to identify the component it is associated wigmd

ro=j.f(2) 4 its location).

name server is listening on (a default port is used e.setattr(k, a)
when it is not explicit given). The name server pro- e. del attr (k)
vides the following services: e. addMet hod(Kk, f)
e. del Met hod(k)
n. exportlRef (k,i) e. addXxxMet hod(k, f)
n. export Caps(Kk, p) e. del XxxMet hods(k, f)
n. del | Ref (k) e.addGet Attr(k,f)f
n. del Caps(k) e.del GetAttr(k,f)f
n. | ookupl Ref (k) —i e.addSet Attr(k,f)f
n.import | Ref (k) —i e.del SetAttr(k,f)f
n.inport Caps(k) —p e. changed ass(Q) f
n.listlRefs()—[i] e. addl mpMet hod(k) ¥
n.listCaps()—[p] e. del | npMet hod(Kk) *
:
The expor t | Ref method makes the interface - Zdld: mﬁxxx: :03(::' :)1
references available through a key for everyone that e del i mprr e © § 2R
. e. changej ect (0)
have access to this name server (through a name e.restore()

server proxy). The ookupl Ref method returns
the interface reference exported with the given key.tha services marked witH are only avail-

Theinport| Ref creates an implicit operationalyp e from the meta-objects of objects and services

binding to the exported interface and returns an iarked with® are only available from the meta-

terface reference to an interface connected to the e ot of interfaces. The services listed without any

posite side of this implicit binding. The returneq,, ks have effect on the exported methods when
interface reference can be used immediately to Cﬂﬂey are applied on interfaces.

methods exported in the exported interface reference\l-hei nspect method returns a detailed descrip-
(and vice versa). Almost the equivalent set of S&kon of the object or the interface. Theest or e

wceks] a:jre available for calpsuIeS- -":*Erorkt Caps method removes the encapsulation meta-object.
method returns a capsule proxy. A l00kUp method ye,; methods can be added to an object or

forl capsules (;j?hes nor;c _eXIT_tS_ttk))gcc?use capsules 18 the exported methods of an interface with the
only accessed through Implicit bindings. addMet hod service. A new methodet that re-
turns the value of the attributeis added to objeat

4 Meta-modds with this code:

OOPP implements two of the Open-ORB meta- def getx(self): 1
models: the encapsulation and the composition return self.x 2
meta-model. The implementation of these meta- €0 = encapsul ation(o) 3
models i OOPP gains a lot from the reflective fea- €0- addMethod("get™, getx) 4
tures of Python[9]. print o.get() 5

41 E lati The addXxxMet hod listed above repre-
: ncapsulation sents the three methodsaddPr eMet hod,

The encapsulation meta-model provides accessa@dPost Method — and addW apMet hod

the representation or the implementation of intefbat are used to add pre-, post- and wrap-methods,
faces and objects (components). The encapsuispectively. A pre-method is a method that is called

tion meta-model of a given Object or interface igefore the actual method is called. The pre'methOd
accessed through its encapsulation meta-object.NAas access to the arguments of the method and it
meta-object does not exists until it is accessed. Tf@n read and change their values. A post-method is
encapsul at i on function is used to get access t& method that is performed after the actual method

the encapsulation meta-object of an object or an if{@s returned. It has access to the arguments and
terface. This is the most common services of ti@e return value of the method and it can change

encapsulation meta-object: the return value before it is passed to the caller. A
wrap-method is wrapping the actual method. It can

e.inspect()—D manipulate the arguments and the return values. It
e.getattr (k) —r can even decide not to call the actual method at all.

3 ea for a can be used to add pre-, post- and wrap-
methods tdf in objecta (1 in Figure[3). The en-
capsulation meta-obje@i for i can be used to
add pre-, post- and wrap-methods to the exported
methodf in interfacei (2in Figurel3). Finally, the
encapsulation meta-objeej forj can be used to
add pre-methods, post-methods and wrap-methods
to the imported methofl in interfacej (3in Figure
[3). The example below adds a post-method at each
point 1 (line 4), 2 (line 5) and3 (line 6) in Figure
3. All the added post-methods print out the return
Below is a post-method added to thet method value ("result”) before they increase it with one.
of objecto. The post-method prints the return value
of get before it returns to the caller: def inc(self,m: 1
print m{"result"], 2
n"result"]=n"result"]+1 s
ea. addPost Met hod("f", i nc)
ei . addPost Met hod("f", i nc)
ej . addl npPost Met hod("f", i nc)
print j.f(2)

a b

Figure 3: Method adaption

def p(self,n:
print n{"result"]
eo = encapsul ati on(0)
e0. addPost Met hod(" get", p)

AW N e
~ o a »

The functionp in the code above has two argu-
ments. All pre-, post- and wrap-methods have to Suppose methofl with argument 2 in objeca
have these two arguments. The first argunsaitf returns the value 1. The output from the code above
is a reference to the instance of the object (as in evill thenbe “1 2 3 4", where 4 is the final return
ery method of an object in Python). The secondlue.
argumentmis a dictionary containing information Objects have attributes and the encapsulation
about the method call. This includes a reference toeta-object can install methods to be called when
the object, the name of the method, the method, tthe attributes of an object are read or changed. These
arguments and the return valde esul t). features are useful for different monitoring tasks.

Theaddl npMet hod is used to add a method toOne possibility is to monitor when a given attribute
the list of imported methods of an interface. Theecomes greater than a limit value and then raise an
usage obddl npMet hod can be demonstrated to-alarm. The example below adds a method to print
gether with theaddMet hod service for interfaces. a warning message when attributef objecto be-

(the semantics of theddMet hod service for inter- comes greater than 10. The statement in line 6 will
faces are “add an exported method to the interfacegenerate a warning message.
Objecto has an interface. i that exports some of

the methods of its object and is bound with a lo- def warning(self,k,v):

1
cal binding to another interfage The code below if v > 10: 2
adds methodiet from objecto to these interfaces. print "Warning" 3
Notice thatadd| npMet hod also updates the local eo = encapsul ation(o) 4
binding. eo. addSet Attr ("x", war ni ng) 5
o.x = 11 6
ei = encapsulation(o.i)
ei . addMet hod("get", o. get) The first argument of thaddSet At t r method

ej = encapsul ation(j) is the name of the attribute in the object. The sec-
ej . addl npMet hod("get") ond argument is the function to call when attribute
print j.get() 5 x of objecto is given a new value. This function
has three arguments, where the first is the object in-
Figure[3 illustrates the usage of all the differerstance (equal t@ in this case), the second is the
services used to add pre-, post-, and wrap-methodame of the attribute'k" in this case) and the last
The example contains an objectvith a method . argumentis the new value of the attribute (11 in this
Interfacei exports method and interfac§ im- case).
ports method . Interfacei andj are connected The changeC ass method makes it possible
with a local binding. The encapsulation meta-objett change the class of the object at any time. The

A W N e

changeObj ect method actually change the obbehaviour of these components. This is done to fulfil
ject associated with the interface. These powerfille goal of the given management policy.
features must be used carefully.

5.1 Roles

A management object can have three different roles.

Complex binding objects are typical composit& monitor collects and filters information from the
components. Multimedia applications in mobileunning system. For example, a monitor of a buffer
environments are examples where the componealld check if buffer overflow occurs to often (with
graph of composite components need to be manigligiven definition of ‘to often’). Astrategy selector
lated and restructured (changed and extended) dgitlects information from the monitors and, based
ing their life cycle. The composition meta-model ign this information and on timing constraints, de-
provided for this kind of manipulation of compositeide to select a management strategy. For example,
components. a strategy selector that receives a buffer “overflow

The composition meta-model of a compositg often” signal from a monitor could decide to de-
component is accessed through its compositiggy the stream at its source. Theategy activator
meta-object. Theonposi ti on function is used activates (performs) the selected strategy when it re-
to get access to the composition meta-object ofcaives a signal from a strategy selector. The mon-
composite component. The services provided are ifors and the strategy activators can use the meta-
fluenced by the operations originally proposed in thgyaces of the components under management to per-
Adapt project for the manipulation of object graphgrm their tasks.
of open bindings [10]. The following operations are Figure(3 illustrates a management setup for a pro-
available from the composition meta-object: ducer/consumer case. The monitdmonitors if
there is a buffer “overflow to often”. The strategy

4.2 Composition

e zzpect ()—b selectorS selects strategl or C. Strategy activator
€ ? (c) Cmanipulates the meta-models of the consumer and
2' biernrg\('f(JC; strategy activatoP manipulates the meta-models of
' : the producer.
e. break(i,j) P
e.repl ace(c, d)

5.2 Automata

Thei nspect method of a composition meta-The monitors and strategy selectors are imple-
object returns a description of the composite comp@ented with automata components. Their behaviour
nent including the contained objects and the edgésspecified in formal timed automata descriptions.
of the component graph. Thedd method adds a One of the advantages of using automata is that we
new component to the composite component, but f@n reason about and simulate their behaviour. This,
new edges (|oca| b|nd|ngs) are created. The nmether with a formal description of the Complete
component can be located in a remote capsule. THtem can be used to simulate and formally reason
bi nd method creates a new edge in the componeout the whole systern [11,112].
graph and thdr eak method breaks such a bind- A more detailed quality of service management
ing. Itis transparent for the user if the actual loc&xample can be found in [13]. This also includes a
binding is created or removed locally or in a remotéetailed evaluation of the approach.
capsule. The epl ace method replaces an exist-
ing component with a new one. The new component

must have a matching set of interfaces. cknowl edgements
Frank Eliassen has been my supervisor during this
5 QOS management project. His contribution has been important for the

final outcome of the project. Gordon Blair has been
OOPP includes support for quality of service (QoShe main supplier of ideas and feedbacks during the
management. The management is done with a design and implementation of OOPP. Michael Pap-
of management objects connected with signal bindthomas has contributed a lot to the early attempts to
ings. A management object can use the meta-spadeoduce reflection to the programming model. The
of the components under management to change tloatributions from Geoff Coulson in the Open-ORB

Encapsulation
meta-object

Strategy Strategy
activator selector

\ 1
\ !
\ !

\ !
| V

Producer Binding

\ ! \]
\ 1 \ 1
\ I . \ !

\ | Monitor \ h

\ ! \ 1
\ 1
\]

Composition
meta-object

Strategy
activator

Buffer Consumer

Figure 4: A management setup for the producer/consumer case

project had a great influence in this work. Fabio
Costa has also been an important discussion part-
ner in the realisation of the current programmin
model and meta-models. David Sanchez had th
pleasure of being the important first user of OOPP.
His feedback has been valuable for the actual imple-
mentation. Lynne Blair has contributed a lot to theys
automata-based quality of service management im-
plemented in OOPP. Finally, thanks to the various
members of the Distributed Multimedia Research
Group at Lancaster University that contributed to[6]
discussions on areas related to this work.

References [7]

[1] Gordon S. Blair, Geoff Coulson, Philippe
Robin, and Michael Papathomas. An architec-
ture for next generation middleware. hid-
dleware’98 September 1998. 8]

[2] Frank Eliassen, Anders Andersen, Gordon S.
Blair, Fabio Costa, Geoff Coulson, Vera
Goebel, @yvind Hanssen, Tom Kristensenjg]
Thomas Plageman, Hans Ole Rafaelsen, Ka-
tia B. Saikoski, and Weihai Yu. Next gener-
ation middleware: Requirements, architecture,
and prototypes. Iiith IEEE Workshop on Fu-
ture Trends of Distributed Computing Systen{éo]
(FTDCS '99) Tunisia, South Africa, Decem-
ber 1999.

[3] Anders Andersen, Gordon S. Blair, Geoff
Coulson, and Frank Eliassen. A reflec-
tive component-based middleware in Python.

Technical report, NORUT IT, 1999. Submit-
ted IPC8.

] ISO/IEC. Open distributed processing refer-

ence model, part 1: Overview. ITU-T Rec.
X.901 — ISO/IEC 10746-1, ISO/IEC, 1995.

] ISO/IEC. Open distributed processing refer-

ence model, part 2: Foundations. ITU-T Rec.
X.902 — ISO/IEC 10746-2, ISO/IEC, 1995.

Clemens SzyperskiComponent Software, Be-
yond Object-Oriented Programming ACM
Press/Addison-Wesley, 1998.

David C. Luckham, James Vera, and Sigurd
Meldal. Three concepts of system architecture.
Technical Report CSL-TR-95-674, Computer
Systems Laboratory, Stanford University, July
1995.

ISO/IEC. Open distributed processing refer-
ence model, part 3: Architecture. ITU-T Rec.
X.903 — ISO/IEC 10746-3, ISO/IEC, 1995.

Anders Andersen. A note on reflection in
Python 1.5. Distributed Multimedia Research
Group Report MPG-98-05, Lancaster Univer-
sity, UK, March 1998.

Tom Fitzpatrick, Gordon S. Blair, Geoff
Coulson, Nigel Davies, and Philippe Robin.
Supporting adaptive multimedia applications
through open bindings. IRroceedings of the
4th International Conference on Configurable
Distributed Systems (ICCDS '98\nnapolis,
Maryland, US, May 1998.

[11]

[12]

[13]

Lynne Blair. The Formal Specification and
Verification of Distributed Multimedia Sys-
tems Dr. thesis, Department of Computer Sci-
ence, Lancaster University, September 1994.

Gordon S. Blair, Lynne Blair, Howard Bow-
man, and Amanda Chetwyndrormal Spec-
ification of Distributed Multimedia Systems
UCL Press, 1998.

David Sanches Gancedo. QoSMonAuTA, QoS
monitoring and adaptation using timed au-
tomata. Master’s thesis, Lancaster University,
UK, September 1999.

10

	Introduction
	Programming structures
	Interfaces and local bindings
	Components
	Binding objects

	Infrastructure
	Capsules
	Name servers

	Meta-models
	Encapsulation
	Composition

	QoS management
	Roles
	Automata

