
The Open-ORB Python Prototype API∗

Anders Andersen
NORUT IT

aa@computer.org

October 1999

Abstract

This note gives an introduction to the Applica-
tion Programming Interface (API) of the Open-ORB
Python Prototype (OOPP). OOPP is based on the
middleware architecture under development in the
Open-ORB project at Lancaster University. Open-
ORB is a reflective component-based middleware
platform. Traditionally, middleware mask out the
problems of heterogeneity and distribution. How-
ever, a wide range of new and existing applications
require the possibilty to configure the support pro-
vided and to inspect and adapt this support at run-
time. Open-ORB provides this openess through the
concept of refelction.

Contents

1 Introduction 1

2 Programming structures 1
2.1 Interfaces and local bindings 1

2.2 Components 3

2.3 Binding objects 4

3 Infrastructure 4
3.1 Capsules 4

3.2 Name servers 5

4 Meta-models 6
4.1 Encapsulation 6

4.2 Composition 8

5 QoS management 8
5.1 Roles 8

5.2 Automata 8

∗NORUT IT Report IT302/2-99

1 Introduction

The Open-ORB Python Prototype (OOPP) is based
on the middleware architecture under development
in the Open-ORB project at Lancaster University
[1]. This architecture tries to solve the problems of
the black-box philosophy of traditional middleware.
The requirements from a wide range of applications
that need support for (i) multimedia, (ii) real-time,
and (iii) mobility can be fulfilled by an open en-
gineering approach in the design of a middleware
platform [2]. Open-ORB provides this openness in
a principled way (as opposed to ad hoc) through the
concept of reflection. A more detailed discussion
related to OOPP can be found in [3]. OOPP is avail-
able from Starship Python1.

Table 1 describes the different arguments and re-
turn values used in the descriptions of the interfaces
(functions, methods, constructors and so on) in the
following text.

2 Programming structures

OOPP provides a set of basic programming struc-
tures for the programmer. These structures are influ-
enced by the computational viewpoint of the Open
Distributed Processing Reference Model (RM-
ODP) [4].

2.1 Interfaces and local bindings

An interface of an object defines a subset of the in-
teractions of that object [5]. A method call to a
method of the object and a method call from the ob-
ject (to a method of another object) are examples of
such interactions. Different interface types for oper-
ational methods, signals and streams are available.
The operational interface type is the basic interface
type that all other interface types are based on. It
provides a set of exported and imported methods

1http://starship.python.net/crew/anders/oopp/

1

http://starship.python.net/crew/anders/oopp/

i,j Interface references
[i] List of interface references
l Local binding control object
o Object instance
c,d Component instances
u,v Unique component identifier
C Class or factory
p,q Capsule proxy (or capsule)
[p] List of capsule proxies
n Name server proxy
a,r Any value/result
k Key or name
m Method name

[m] List of methods
[n] List of methods
f Method implementation
t Argument tuple
w Argument dictionary
e Meta-object
L Any list
D,E Any dictionaries
x∗ x is optional

Table 1: Attributes in interface descriptions

a

f

i

b

j

Figure 1: A local binding

and it is associated with a given object. An exported
method of an object is a method of that object made
available through an interface. An imported method
of an object is an external method made available to
the object through an interface.

A local binding is an establishing behaviour be-
tween two interfaces. A local binding connects the
exported method of one interface to the imported
method of another interface and vice versa. The two
objectsa andb in Figure 1 have an interfacesi
and an interfacej, respectively. Interfacei andj
are bound with a local binding. Objectb can call
methodf of objecta through its interfacej.

The following services for interfaces and local
bindings are provided by thelbind module:

IRef(o,[m],[n])→i

localBind(i,j)→l

localBindOneWay(i,j)→l

breakBinding(i,j)

l.breakBinding()

l.reBind(i,j)

l.reBindOneWay(i,j)

IRef is the class used to create interfaces and
localBind is a function that creates a local bind-
ing between two interfaces. The interfaces and the
local binding between objecta andb in Figure 1 are
created with the following Python code:

i = IRef(a,["f"],[]) 1

j = IRef(b,[],["f"]) 2

l = localBind(i,j) 3

r = j.f(2) 4

The arguments to theIRef constructor is (i)
the object, (ii) the description of exported methods
and (iii) the description of imported methods2. The
localBind function returns a local binding con-
trol object that can be used to control the local bind-
ing. A local binding only exists as cross-references
in the interfaces bound. A local binding can be bro-
ken with thebreakBinding function or with the
breakBinding method of the local binding con-
trol object. The following code illustrates these two
methods for the example above (select one):

breakBinding(i,j) 1

l.breakBinding() 2

It is possible to create a one-way local binding
with the localBindOneWay function. The se-
mantics are that a connection is made from the
imported methods of one interface to the exported
methods of the other interface andnot vice versa.
A local binding control object representing a broken
binding can be used to create a new local binding
with thereBind andreBindOneWaymethods.

Specialised stream and signal interfaces are also
available (see thesigbind and streambind
module below). These interfaces have a source and
a sink pair. A local binding between a source and a
sink can be created with thelocalBind function.
The code below creates a stream interface reference
source and sink pair and makes a local binding be-
tween them. The source interface is associated with
objecta and the sink interface is associated with ob-
jectb:

src = StreamSrcIRef(a) 1

sink = StreamSinkIRef(b) 2

l = localBind(src,sink) 3

src.put(data) 4

2In this prototype the descriptions of exported and imported
methods are lists of method names. This can be extended with
an interface description language like the CORBA IDL.

2

A stream interface uses aput method with one
data argument. Objectb in the example above
implements theput method. A signal interface
pair is created with theSigSrcIRef and the
SigSinkIRef classes. The signal source inter-
face provides (exports) anevent method without
any arguments.

2.2 Components

A component is a unit of independent deployment
[6]. They are developed and delivered indepen-
dently and provide access to their requested and pro-
vided services (methods) through one or more spec-
ified interfaces. All interactions between compo-
nents are specified through these well defined inter-
faces. Such an interface connection architecture has
a basic conformance criteria that says that the sys-
tem’s components interacts only as specified in their
interfaces [7].

The interfaces of a component are available with-
out any previous knowledge about the component
providing them. The interfaces provided can be
browsed and a specific interface can be accessed
by its key (name). A primitive component that
encapsulates one object and provides/requests ac-
cess to/from its object through a set of inter-
faces can be created with theComponent class
or the componentFactory factory from the
component module:

Component(D,o)→c

componentFactory(L,C,t∗,w∗)→c

A component for objecta in the example above
can be created with the following statement:

ca = Component({"op":i},a) 1

The result is a componentca with an interface
with key "op" represented by the interface refer-
encei that exports the methodf. The compo-
nent encapsulates objecta that implements method
f. The interfaces of a component are available
in the interfaces attribute of the component.
Interface"op" of ca can be accessed with the
ca.interfaces["op"] expression.

A classA has a constructor with no arguments that
creates an object with an interface in attributei. A
component with an interface with key"i" can the
be created with the following statement:

ca = componentFactory(["i"],A) 1

co

"in" "out"

ca

"ai" "ao"

cb

"bi" "bo"

Figure 2: A composite component

A composite component is a way to manage a
complex component. In particular, a composite
component encapsulates a graph of components.
The outside view of a composite component is sim-
ilar to a primitive component: it provides a set of
interfaces that can be browsed and accessed through
their keys (names). Figure 2 illustrates a simple
composite componentco providing the external in-
terfaces"in" and"out". It contains two compo-
nentsca andcb connected with a local binding be-
tween their interfaces"ao" and"bi". The exter-
nal interface"in" is a mapping to interface"ai"
in componentca and the external interface"out"
is a mapping to interface"bo" in componentcb.

Composite components can be created
with the generic Composite class or the
generic compositeFactory factory from the
composite module:

Composite(D,E,a∗)→c

compositeFactory(D,E,a∗)→c

The first argument of theComposite class con-
structor is the external interfaces of the component
and the second specifies the component graph. The
component graph is specified by the components
contained in the composite component ("comps"),
the set of internal interfaces ("iif") and the set of
edges (local bindings) between these internal inter-
faces ("edges"). The composite componentco
above was created with the following statement:

co = Composite(1

{"in":(ca,"ai"), 2

"out":(cb,"bo")}, 3

{"comps":[ca,cb], 4

"iif":{"ao":(ca,"ao"), 5

"bi":(cb,"bi")}, 6

"edges":[("ao","bi")]}) 7

3

The Composite class and
compositeFactory factory can be used to
create any composite component. The result is a
fairly complex constructor syntax. A composite
component class or factory is usually a refinement
of the generic composite class and factory with
an less complex constructor syntax. The binding
objects discussed below are created with such
refined classes or factories.

2.3 Binding objects

Local bindings can only be used between interfaces
in the same address space (see capsule below). In
contrast, binding objects can be used to create bind-
ings between interfaces in different address spaces
or even on different nodes. An operational binding
is meant to replace a local binding in such cases. An
operational binding is a specialised composite com-
ponent called a binding object [8]. Binding objects
for streams and signals are also available in OOPP.
An operational binding can be created with the con-
structor of theOpBinding class or created and in-
stalled with theremoteBind function (both from
theopbind module):

OpBinding(i,j,a∗)→c

remoteBind(i,j,a∗)→c

The difference between this class and function
is that theOpBinding constructor only creates
the binding object while theremoteBind func-
tion also binds the external interfaces of the bind-
ing object to the two interfaces to be bound (in the
same way aslocalBind binds two bindings to be
bound). Objecta with interfacei in capsuleA ex-
ports its methodf. Objectb in capsuleB with inter-
facej imports methodf. The following code cre-
ates an operational binding between interfacei and
j and then calls methodf of objecta in capsuleA
through interfacej in capsuleB:

b = remoteBind(i,j) 1

r = j.f(2) 2

A signal binding can be created with the construc-
tor of theSigBinding class, but as argued above
for remoteBind they can more easily be created
and installed with thesigBind function. The
sigbind module provides the following classes
and functions:

SigSrcIRef(o)→i

SigSinkIRef(o)→i

SigBinding(p,q,a∗)→c

sigBind(i,j,a∗)→c

ThesigBind function creates a (remote) signal
binding between a signal source interface and a sig-
nal sink interface.

The stream binding provided by OOPP does not
provide any retransmission, sequencing or buffer-
ing. Every data frame fed in to it from the source
side will be delivered as quickly as possible to the
sink side. However, this approach is too simple for
many applications that need a more advanced stream
binding. The stream binding provided, however, can
be used as a starting point for the creation of a bind-
ing with the features needed for the given applica-
tion. Stream bindings can be created with the con-
structor of theStreamBinding class, but as ar-
gued above forremoteBind they can more eas-
ily be created and installed with thestreamBind
function. Thestreambind module provides the
following classes and functions:

StreamSrcIRef(o)→i

StreamSinkIRef(o)→i

StreamBinding(p,q,a∗)→c

streamBind(i,j,a∗)→c

The streamBind function creates a stream
binding between a stream source interface and a
stream sink interface. The following code creates
a stream binding between the stream source inter-
facesrc and the stream sink interfacesink and
then sends 100 data frames through the binding to
the sink:

b = streamBind(src,sink) 1

for i in range(100): 2

src.put(data[i]) 3

3 Infrastructure

The infrastructure is a supporting environment for
programs in OOPP. The infrastructure is influenced
by the engineering viewpoint of RM-ODP [8], but
the engineering viewpoint of RM-ODP is also re-
lated to the meta-models in OOPP (see section 4).

3.1 Capsules

Each address space in OOPP is controlled by a
capsule. A capsule provides services for its local
components (the components located in the address
space it controls). It can also provide services to re-
mote components through a capsule proxy. A cap-
sule proxy and a local capsule have identical in-
terfaces, but the requests through a capsule proxy
are forwarded to the capsule it represents and the

4

replies are returned back to the caller through the
proxy. The local capsule is available through the
local attribute of thecapsulemodule and a cap-
sule proxy for a remote capsule is created with the
CapsuleProxy class:

CapsuleProxy(a,r)→p

The following services are provided by a capsule
(and a capsule proxy)p:

p.serve()

p.servethread()

p.stopserve()

p.registerComponent(c)→u

p.mkComponent(C,t∗,w∗)→u

p.rcpComponent(u,p)→v

p.mvComponent(u,p)→v

p.delComponent(u)

p.getIRef(u,k)→i

p.localBind(i,j)→l

p.localBindOneWay(i,j)→l

p.breakBinding(i,j)

p.callMethod(u,k,m,t∗,w∗)→r∗

p.announceMethod(u,k,m,t∗,w∗)

p.announceThread(u,k,m,t∗,w∗)

p.sendMethod(u,k,m,t∗,w∗)→a

p.recvMethod(a)→r∗

p.newport(a)→r

p.delport(r)

A component has to be registered in the capsule to
be available for the services provided. A component
created with themkComponentmethod of the cap-
sule will automatically be registered in the capsule.
TheregisterComponent andmkComponent
methods return a local unique identifier for the com-
ponent (unique in the capsule). This identifier to-
gether with a capsule proxy provides a global iden-
tification of a component. The code below uses a
capsule proxyp to create an instance of the compo-
nent classC in a remote capsule (the constructor of
classC is called without any arguments). The result
is a component with the unique identifieru. It then
creates an operational binding between the local in-
terfacej and the remote interfacei of component
u. It is then possible to call methodf of the remote
componentu through the interface referencej.

u = p.mkComponent(C) 1

i = p.getIRef(u,"i") 2

b = remoteBind(i,j) 3

r = j.f(2) 4

The getIRef service of a capsule returns a
global interface reference. In the example above is
the interface reference of interface"i" in compo-
nentu returned. ThegetIRef service of a capsule
should always be used when a global interface ref-
erence of a registered component is needed3.

The capsule also provides services to establish
and break a local binding in the capsule. These ser-
vices are useful when a local binding in a remote
capsule has to be established or broken. The request
is then done through a capsule proxy.

ThecallMethod service of an capsule is a low-
level method used to call a specific method in an
interface of a registered component. This service
is meant for implementing higher level bindings or
services. The application programmer should use
a binding object to establish a connection between
two interfaces and call the remote method through
the interfaces and the binding.

The following code illustrates the difference be-
tween usingcallMethod (line 1) and a opera-
tional binding (line 4). Methodf is in both cases
called with an argument2 an the result is saved in
r:

r = callMethod(u,"i","f",(2,)) 1

i = p.getIRef(u,"i") 2

b = remoteBind(i,j) 3

r = j.f(2) 4

The capsule also provides other low-level meth-
ods not listed above. This includes announcements
method calls, asynchronous method calls and ser-
vices to duplicate and move components. A capsule
proxy can only be used to access a capsule if this
capsule has started its serving loop. This has to be
done explicitly with theserve method of the local
capsule.

3.2 Name servers

A name service is needed to make it possible for
components in different capsules to interact. The
simple name service provided in OOPP is imple-
mented with a name server. Interfaces and capsules
can be registered by a key (name) in such a name
server. The name server is accessed through a name
server proxy. A name server proxy for a given name
server can be created with the knowledge of the lo-
cation (the node) of the name server and the port the

3A global interface reference is useful outside the local capsule of
the interface. It contains a ‘unique component identifier’ ‘capsule
proxy’ pair to identify the component it is associated with (and
its location).

5

name server is listening on (a default port is used
when it is not explicit given). The name server pro-
vides the following services:

n.exportIRef(k,i)

n.exportCaps(k,p)

n.delIRef(k)

n.delCaps(k)

n.lookupIRef(k)→i

n.importIRef(k)→i

n.importCaps(k)→p

n.listIRefs()→[i]

n.listCaps()→[p]

The exportIRef method makes the interface
references available through a key for everyone that
have access to this name server (through a name
server proxy). ThelookupIRef method returns
the interface reference exported with the given key.
The importIRef creates an implicit operational
binding to the exported interface and returns an in-
terface reference to an interface connected to the op-
posite side of this implicit binding. The returned
interface reference can be used immediately to call
methods exported in the exported interface reference
(and vice versa). Almost the equivalent set of ser-
vices are available for capsules. TheimportCaps
method returns a capsule proxy. A lookup method
for capsules does not exists because capsules are
only accessed through implicit bindings.

4 Meta-models

OOPP implements two of the Open-ORB meta-
models: the encapsulation and the composition
meta-model. The implementation of these meta-
models i OOPP gains a lot from the reflective fea-
tures of Python [9].

4.1 Encapsulation

The encapsulation meta-model provides access to
the representation or the implementation of inter-
faces and objects (components). The encapsula-
tion meta-model of a given object or interface is
accessed through its encapsulation meta-object. A
meta-object does not exists until it is accessed. The
encapsulation function is used to get access to
the encapsulation meta-object of an object or an in-
terface. This is the most common services of the
encapsulation meta-object:

e.inspect()→D

e.getattr(k)→r

e.setattr(k,a)

e.delattr(k)

e.addMethod(k,f)

e.delMethod(k)

e.addXxxMethod(k,f)

e.delXxxMethods(k,f)

e.addGetAttr(k,f)†

e.delGetAttr(k,f)†

e.addSetAttr(k,f)†

e.delSetAttr(k,f)†

e.changeClass(C)†

e.addImpMethod(k)‡

e.delImpMethod(k)‡

e.addImpXxxMethod(k,f)‡

e.delImpPreMethod(k,f)‡

e.changeObject(o)‡

e.restore()

The services marked with† are only avail-
able from the meta-objects of objects and services
marked with‡ are only available from the meta-
objects of interfaces. The services listed without any
marks have effect on the exported methods when
they are applied on interfaces.

Theinspectmethod returns a detailed descrip-
tion of the object or the interface. Therestore
method removes the encapsulation meta-object.

New methods can be added to an object or
to the exported methods of an interface with the
addMethod service. A new methodget that re-
turns the value of the attributex is added to objecto
with this code:

def getx(self): 1

return self.x 2

eo = encapsulation(o) 3

eo.addMethod("get",getx) 4

print o.get() 5

The addXxxMethod listed above repre-
sents the three methodsaddPreMethod,
addPostMethod and addWrapMethod
that are used to add pre-, post- and wrap-methods,
respectively. A pre-method is a method that is called
before the actual method is called. The pre-method
has access to the arguments of the method and it
can read and change their values. A post-method is
a method that is performed after the actual method
has returned. It has access to the arguments and
the return value of the method and it can change
the return value before it is passed to the caller. A
wrap-method is wrapping the actual method. It can
manipulate the arguments and the return values. It
can even decide not to call the actual method at all.

6

a

f

1

i

2

b

j

3

Figure 3: Method adaption

Below is a post-method added to theget method
of objecto. The post-method prints the return value
of get before it returns to the caller:

def p(self,m): 1

print m["result"] 2

eo = encapsulation(o) 3

eo.addPostMethod("get",p) 4

The functionp in the code above has two argu-
ments. All pre-, post- and wrap-methods have to
have these two arguments. The first argumentself
is a reference to the instance of the object (as in ev-
ery method of an object in Python). The second
argumentm is a dictionary containing information
about the method call. This includes a reference to
the object, the name of the method, the method, the
arguments and the return value ("result").

TheaddImpMethod is used to add a method to
the list of imported methods of an interface. The
usage ofaddImpMethod can be demonstrated to-
gether with theaddMethod service for interfaces.
(the semantics of theaddMethod service for inter-
faces are “add an exported method to the interface”).
Objecto has an interfaceo.i that exports some of
the methods of its object and is bound with a lo-
cal binding to another interfacej. The code below
adds methodget from objecto to these interfaces.
Notice thataddImpMethod also updates the local
binding.

ei = encapsulation(o.i) 1

ei.addMethod("get",o.get) 2

ej = encapsulation(j) 3

ej.addImpMethod("get") 4

print j.get() 5

Figure 3 illustrates the usage of all the different
services used to add pre-, post-, and wrap-methods.
The example contains an objecta with a methodf.
Interfacei exports methodf and interfacej im-
ports methodf. Interfacei andj are connected
with a local binding. The encapsulation meta-object

ea for a can be used to add pre-, post- and wrap-
methods tof in objecta (1 in Figure 3). The en-
capsulation meta-objectei for i can be used to
add pre-, post- and wrap-methods to the exported
methodf in interfacei (2 in Figure 3). Finally, the
encapsulation meta-objectej for j can be used to
add pre-methods, post-methods and wrap-methods
to the imported methodf in interfacej (3 in Figure
3). The example below adds a post-method at each
point 1 (line 4), 2 (line 5) and3 (line 6) in Figure
3. All the added post-methods print out the return
value (”result”) before they increase it with one.

def inc(self,m): 1

print m["result"], 2

m["result"]=m["result"]+1 3

ea.addPostMethod("f",inc) 4

ei.addPostMethod("f",inc) 5

ej.addImpPostMethod("f",inc) 6

print j.f(2) 7

Suppose methodf with argument 2 in objecta
returns the value 1. The output from the code above
will then be “1 2 3 4”, where 4 is the final return
value.

Objects have attributes and the encapsulation
meta-object can install methods to be called when
the attributes of an object are read or changed. These
features are useful for different monitoring tasks.
One possibility is to monitor when a given attribute
becomes greater than a limit value and then raise an
alarm. The example below adds a method to print
a warning message when attributex of objecto be-
comes greater than 10. The statement in line 6 will
generate a warning message.

def warning(self,k,v): 1

if v > 10: 2

print "Warning" 3

eo = encapsulation(o) 4

eo.addSetAttr("x",warning) 5

o.x = 11 6

The first argument of theaddSetAttr method
is the name of the attribute in the object. The sec-
ond argument is the function to call when attribute
x of objecto is given a new value. This function
has three arguments, where the first is the object in-
stance (equal too in this case), the second is the
name of the attribute ("x" in this case) and the last
argument is the new value of the attribute (11 in this
case).

The changeClass method makes it possible
to change the class of the object at any time. The

7

changeObject method actually change the ob-
ject associated with the interface. These powerful
features must be used carefully.

4.2 Composition

Complex binding objects are typical composite
components. Multimedia applications in mobile
environments are examples where the component
graph of composite components need to be manipu-
lated and restructured (changed and extended) dur-
ing their life cycle. The composition meta-model is
provided for this kind of manipulation of composite
components.

The composition meta-model of a composite
component is accessed through its composition
meta-object. Thecomposition function is used
to get access to the composition meta-object of a
composite component. The services provided are in-
fluenced by the operations originally proposed in the
Adapt project for the manipulation of object graphs
of open bindings [10]. The following operations are
available from the composition meta-object:

e.inspect()→D

e.add(c)

e.remove(c)

e.bind(i,j)

e.break(i,j)

e.replace(c,d)

The inspect method of a composition meta-
object returns a description of the composite compo-
nent including the contained objects and the edges
of the component graph. Theadd method adds a
new component to the composite component, but no
new edges (local bindings) are created. The new
component can be located in a remote capsule. The
bind method creates a new edge in the component
graph and thebreak method breaks such a bind-
ing. It is transparent for the user if the actual local
binding is created or removed locally or in a remote
capsule. Thereplace method replaces an exist-
ing component with a new one. The new component
must have a matching set of interfaces.

5 QoS management

OOPP includes support for quality of service (QoS)
management. The management is done with a set
of management objects connected with signal bind-
ings. A management object can use the meta-space
of the components under management to change the

behaviour of these components. This is done to fulfil
the goal of the given management policy.

5.1 Roles

A management object can have three different roles.
A monitor collects and filters information from the
running system. For example, a monitor of a buffer
could check if buffer overflow occurs to often (with
a given definition of ‘to often’). Astrategy selector
collects information from the monitors and, based
on this information and on timing constraints, de-
cide to select a management strategy. For example,
a strategy selector that receives a buffer “overflow
to often” signal from a monitor could decide to de-
lay the stream at its source. Thestrategy activator
activates (performs) the selected strategy when it re-
ceives a signal from a strategy selector. The mon-
itors and the strategy activators can use the meta-
spaces of the components under management to per-
form their tasks.

Figure 4 illustrates a management setup for a pro-
ducer/consumer case. The monitorM monitors if
there is a buffer “overflow to often”. The strategy
selectorS selects strategyP or C. Strategy activator
Cmanipulates the meta-models of the consumer and
strategy activatorP manipulates the meta-models of
the producer.

5.2 Automata

The monitors and strategy selectors are imple-
mented with automata components. Their behaviour
is specified in formal timed automata descriptions.
One of the advantages of using automata is that we
can reason about and simulate their behaviour. This,
together with a formal description of the complete
system can be used to simulate and formally reason
about the whole system [11, 12].

A more detailed quality of service management
example can be found in [13]. This also includes a
detailed evaluation of the approach.

Acknowledgements

Frank Eliassen has been my supervisor during this
project. His contribution has been important for the
final outcome of the project. Gordon Blair has been
the main supplier of ideas and feedbacks during the
design and implementation of OOPP. Michael Pap-
athomas has contributed a lot to the early attempts to
introduce reflection to the programming model. The
contributions from Geoff Coulson in the Open-ORB

8

Producer Binding Buffer Consumer

Monitor
M

Strategy

selector

S C

Strategy

activator

P

Strategy

activator

Composition

meta-object

Encapsulation

meta-object

Figure 4: A management setup for the producer/consumer case

project had a great influence in this work. Fabio
Costa has also been an important discussion part-
ner in the realisation of the current programming
model and meta-models. David Sánchez had the
pleasure of being the important first user of OOPP.
His feedback has been valuable for the actual imple-
mentation. Lynne Blair has contributed a lot to the
automata-based quality of service management im-
plemented in OOPP. Finally, thanks to the various
members of the Distributed Multimedia Research
Group at Lancaster University that contributed to
discussions on areas related to this work.

References

[1] Gordon S. Blair, Geoff Coulson, Philippe
Robin, and Michael Papathomas. An architec-
ture for next generation middleware. InMid-
dleware’98, September 1998.

[2] Frank Eliassen, Anders Andersen, Gordon S.
Blair, Fabio Costa, Geoff Coulson, Vera
Goebel, Øyvind Hanssen, Tom Kristensen,
Thomas Plageman, Hans Ole Rafaelsen, Ka-
tia B. Saikoski, and Weihai Yu. Next gener-
ation middleware: Requirements, architecture,
and prototypes. In7th IEEE Workshop on Fu-
ture Trends of Distributed Computing Systems
(FTDCS ’99), Tunisia, South Africa, Decem-
ber 1999.

[3] Anders Andersen, Gordon S. Blair, Geoff
Coulson, and Frank Eliassen. A reflec-
tive component-based middleware in Python.

Technical report, NORUT IT, 1999. Submit-
ted IPC8.

[4] ISO/IEC. Open distributed processing refer-
ence model, part 1: Overview. ITU-T Rec.
X.901 — ISO/IEC 10746-1, ISO/IEC, 1995.

[5] ISO/IEC. Open distributed processing refer-
ence model, part 2: Foundations. ITU-T Rec.
X.902 — ISO/IEC 10746-2, ISO/IEC, 1995.

[6] Clemens Szyperski.Component Software, Be-
yond Object-Oriented Programming. ACM
Press/Addison-Wesley, 1998.

[7] David C. Luckham, James Vera, and Sigurd
Meldal. Three concepts of system architecture.
Technical Report CSL-TR-95-674, Computer
Systems Laboratory, Stanford University, July
1995.

[8] ISO/IEC. Open distributed processing refer-
ence model, part 3: Architecture. ITU-T Rec.
X.903 — ISO/IEC 10746-3, ISO/IEC, 1995.

[9] Anders Andersen. A note on reflection in
Python 1.5. Distributed Multimedia Research
Group Report MPG-98-05, Lancaster Univer-
sity, UK, March 1998.

[10] Tom Fitzpatrick, Gordon S. Blair, Geoff
Coulson, Nigel Davies, and Philippe Robin.
Supporting adaptive multimedia applications
through open bindings. InProceedings of the
4th International Conference on Configurable
Distributed Systems (ICCDS ’98), Annapolis,
Maryland, US, May 1998.

9

[11] Lynne Blair. The Formal Specification and
Verification of Distributed Multimedia Sys-
tems. Dr. thesis, Department of Computer Sci-
ence, Lancaster University, September 1994.

[12] Gordon S. Blair, Lynne Blair, Howard Bow-
man, and Amanda Chetwynd.Formal Spec-
ification of Distributed Multimedia Systems.
UCL Press, 1998.

[13] David Sánches Gancedo. QoSMonAuTA, QoS
monitoring and adaptation using timed au-
tomata. Master’s thesis, Lancaster University,
UK, September 1999.

10

	Introduction
	Programming structures
	Interfaces and local bindings
	Components
	Binding objects

	Infrastructure
	Capsules
	Name servers

	Meta-models
	Encapsulation
	Composition

	QoS management
	Roles
	Automata

