composite.py 1

R'"" Composite objects 1

Author : Anders Andersen

Created On : Tue Apr 28 09:34:23 1998
Last Modified By:

Last Modified On: Wed Jul 07 21:14:27 1999
Status : Unknown, Use with caution!

Copyright (© 1998, 1999 Lancaster University, UK and NORUT Information Technology Ltd., Norway. See
COPYING for details.

This module implements a class (and a factory) for composite objects based on the component class in
conmponent . py. The composite object is represented as an object graph with local bindings between the
objects in the graph. Objects can be located in different capsules on different hosts (see capsul e. py and
nodemgr . py).

co = Conposite(
"in":(ca,"ai"),"out": (cb,"bo")},
{"conps":[ca, ch, cc],
"ifaces": {"ao": (ca, "ao0"),
"bi":(cb,"bi")},
"edges":[("ao","bi")]})
i = IRef(None, [], ["f"])

I bi = localBind(i, co.interfaces["in"])
j = IRef(c, ["h"], [])
I'bj = localBind(co.interfaces["out"], j)

The figure above shows a simple example of a composite object CO created from the class Conposi t e with two
components ca and cb, and two external interfaces, "i n" and "out". The "i n" interface of co is defined to
be the "ai " interface of ca (which is the ai interface of object a), and the "out " interface of co is defined
to be the "bo" interface of cb (which is the bo interface of object b). ca and cb in the example above is
either actual (local) object references or a dictionary containing " capsul e" (a capsule or a capsule proxy) and
"conp" (the name of the registered component).

The code above also binds the "i n" interface of co to the (empty) interface i and the "out" interface of co
to the interface j of an object ¢. The interface i can now be used to access the exported method f in co (which
is method f in ca which is method f in a). When co access the imported h method of its interface " out ", it
will access the h method in ¢. The control objects of the local bindings are not shown in the figure below.

69
70
We need to check the type of some attributes 71
fromtypes inport = 72
73

composite.py

Use local bindings to connect interfaces
fromlbind inport =

Composite objects are an extension of components
from conponent import =

cl ass Conposite(Conmponent):
R'" " Composite component

74

75

76

77

78

79

80

81

82

This class is used for composite objects. A composite object is represented by a component graph rep-
resenting its constituent components. Since a composite object also is a component, it also has public
named interfaces.

def __init__(self, interfaces={}, conponentG aphSpec={}, dir=0):
R'"" Create a composite component

def

90

91

92

A composite component is created with the external interfaces and a component graph specification.
The component graph specification is a directory containing a list of the components, a mapping
from interface names to actual interface references and a list of edges in the graph. If the optional
argument di r is set to 1 (default is 0) the edges in the object graph are directional and represents
one-way local bindings. A composite object can also contain stand-alone components (components
without edges). The introduction to this module (see above) includes an example of the usage of this

class.

component G- aph = sel f. bi ndConmponent s(conmponent G aphSpec,

i faces = {}

for

(name, (conp, iname)) in interfaces.itens():
if type(conp) is DictType:

i faces[name] = conp["capsul e"].getl Ref(conp["conp"],

el se:
i faces[name] = conp.interfaces[inane]

Conponent. __init__ (self, ifaces, conponent G aph)

bi ndConponent s(sel f, conponent G aphSpec, dir):
R'"" Binds the components in the components graph

dir)

Parse the component graph and make local bindings between the components.

Initial component graph
component G aph = {

"conmponents": conponent GraphSpec["conps"], "edges":

Loop through all edges

for

(inanel, inanme2) in conponent GraphSpec|["edges"]:

Fetch the component of these interfaces

conpl = conponent GraphSpec["ifaces"][inanel][0]
nanel = conponent GraphSpec["ifaces"][inanmel][1]
conp2 = conponent GraphSpec["ifaces"][inane2][0]
nane2 = conponent G aphSpec["ifaces"][i nanme2][1]

Fetch interface references
if type(conpl) is DictType:
irefl = conpl|"capsul e"].getl Ref(conpl["comp"],
el se:
irefl = conpl.interfaces[nanel]
if type(conp2) is DictType:

{}}

namel)

i nane)

composite.py 3

iref2 = conp2["capsul e"].getl Ref (conp2["conmp"], nane2) 143

el se: 144

iref2 = conp2.interfaces[name2] 145

146

Create bindings (directional or not) 147

if dir: 148
conmponent G aph["edges"] [(i namel, inanme2)] =\ 149

| ocal Bi ndOneWay(irefl, iref2) 1so

el se: 151
conmponent G aph["edges"] [(i namel, inanme2)] =\ 152

| ocal Bind(irefl, iref2) 153

154

Return the component graph 155
return conponent G aph 156

157

158

def conpositeFactory(interfaceNanes={}, conmponent G aphDesc={}, dir=0): 159
R'"" A factory for composite components 160

Creates a composite component including all its constituent components. The component graph is build
using local bindings (but components in the graph can be binding objects).

The first argument is a list of the interfaces of the new composite component. Each interface is represented
as a mapping from a name to a component/interface name pair. In the mapping key: (conp, i f nane)
is key the name of the interface, conp the name of the component, and i f nanme the name of the interface
in the component conp implementing the interface key.

The second argument is the component graph specification. The component graph specification is a
directory containing a list of the components, a mapping from interface names to actual interface references
and a list of edges in the graph. Since the components are not yet created the components are specified by
a name and how to create them (class or factory and its arguments). Each component is represented by at
tuple, where the first element is the name (key) of the component and the second element is a dictionary
with information about how to create this component. "factory" is the function (or class) used to
create the component, "ar gs" and "kw' are the arguments passed to the factory (these are optional)
and "capsul €" can be used to specify which capsule this component should be created in (the local
capsule is default). The "i faces" and "edges" part of the specification are similar to their counter
part in the component graph specification of the Conposi t e class (the only difference is that "i f aces"
uses names for components and not their actual references).

The last argument is equal to the last argument of the constructor of the Conposi t e class. This is an
example of the creation of a composite component with this factory:

co = conpositeFactory(
"in":("ca","ai"),"out":("cb","bo")}
{"conps": {"ca": {"factory": conponent Fact ory,

“args":(["ai", "ao"], A)},
"cb": {"factory": conponent Fact ory,
“args": (["bi", "bo"], B)}},
"ifaces":"ao": {("ca","ao"),"bi":("cbhb", "bi")},

"edges":[("ao","bi")]})

Initialize structures 212
components = {}; interfaces = {} 213
conponent GraphSpec = {"conps": [], "ifaces": {}, 214
"edges": conponent G aphDesc["edges"]} 215

216

Create components 217

for (key, cinfo) in conponent GaphDesc["conps"].itens(): 218

composite.py

H o HHHH

if not cinfo.has_key("args"):
cinfo["args"] = ()
if not cinfo.has_key("kw'):
cinfo["kw'] = {}
i f cinfo.has_key("capsule"):
conponent s[key] = {
"capsul e": cinfo["capsule"],
"comp": cinfo["capsul e"]. nkConponent (
cinfo["factory"], cinfo["args"], cinfo["kw'])}
el se:
conponent s[key] = (
appl y(cinfo["factory"], cinfo["args"], cinfo["kw']))
conmponent G aphSpec["conps"] . append(conponent s[key])

Generate external interface listing
for (key, (conp, ifnane)) in interfaceNanmes.itens():
i nterfaces[key] = (conmponents[conp], ifnane)

Generate internal interface listing
for (key, (conp, ifnane)) in conponent GraphDesc["ifaces"].itens():
conmponent G aphSpec["i faces"] [key] = (conponents[conp], ifname)

Create composite object
return Conposite(interfaces, conmponent GraphSpec)

LocalWords: Apr Oct UK NORUT aacodefont py nodemngr parbox linewidth pt co
LocalWords: includegraphics hfil aaws cb ao bi IRef 1lbi localBind 1bj comp
LocalWords: 1bind def init componentGraph dir ldots bindComponents ifaces
LocalWords: iname DictType getIRef ci TupleType iref localBindOneWay ifname
LocalWords: compositeFactory interfaceNames componentList nameGraph args kw
LocalWords: cinfo mkComponent

