
composite.py 1

R"""Composite objects

Author : Anders Andersen
Created On : Tue Apr 28 09:34:23 1998
Last Modified By:
Last Modified On: Wed Jul 07 21:14:27 1999
Status : Unknown, Use with caution!

Copyright c© 1998, 1999 Lancaster University, UK and NORUT Information Technology Ltd., Norway. See
COPYING for details.

This module implements a class (and a factory) for composite objects based on the component class in
component.py. The composite object is represented as an object graph with local bindings between the
objects in the graph. Objects can be located in different capsules on different hosts (see capsule.py and
nodemngr.py).

co"in" "out"

ca

"ai" "ao"

cb

"bi" "bo"

f g h

co = Composite(
{"in":(ca,"ai"),"out":(cb,"bo")},
{"comps":[ca,cb,cc],

"ifaces":{"ao":(ca,"ao"),
"bi":(cb,"bi")},

"edges":[("ao","bi")]})
i = IRef(None, [], ["f"])
lbi = localBind(i, co.interfaces["in"])
j = IRef(c, ["h"], [])
lbj = localBind(co.interfaces["out"], j)

The figure above shows a simple example of a composite object co created from the class Composite with two
components ca and cb, and two external interfaces, "in" and "out". The "in" interface of co is defined to
be the "ai" interface of ca (which is the ai interface of object a), and the "out" interface of co is defined
to be the "bo" interface of cb (which is the bo interface of object b). ca and cb in the example above is
either actual (local) object references or a dictionary containing "capsule" (a capsule or a capsule proxy) and
"comp" (the name of the registered component).

The code above also binds the "in" interface of co to the (empty) interface i and the "out" interface of co
to the interface j of an object c. The interface i can now be used to access the exported method f in co (which
is method f in ca which is method f in a). When co access the imported h method of its interface "out", it
will access the h method in c. The control objects of the local bindings are not shown in the figure below.

a

f

ai

oai

ao

oao

b

g

bi

obi

bo

obo

ca
"ai"

"ao"

cb
"bo"

"bi"

co
"in" "out"

c

h

j

oj

i

oi

"""

1

69

70

We need to check the type of some attributes 71

from types import * 72

73

composite.py 2

Use local bindings to connect interfaces 74

from lbind import * 75

76

Composite objects are an extension of components 77

from component import * 78

79

80

class Composite(Component): 81

R"""Composite component

This class is used for composite objects. A composite object is represented by a component graph rep-
resenting its constituent components. Since a composite object also is a component, it also has public
named interfaces.

"""

82

90

def __init__(self, interfaces={}, componentGraphSpec={}, dir=0): 91

R"""Create a composite component

A composite component is created with the external interfaces and a component graph specification.
The component graph specification is a directory containing a list of the components, a mapping
from interface names to actual interface references and a list of edges in the graph. If the optional
argument dir is set to 1 (default is 0) the edges in the object graph are directional and represents
one-way local bindings. A composite object can also contain stand-alone components (components
without edges). The introduction to this module (see above) includes an example of the usage of this
class.

"""

92

componentGraph = self.bindComponents(componentGraphSpec, dir) 107

ifaces = {} 108

for (name, (comp, iname)) in interfaces.items(): 109

if type(comp) is DictType: 110

ifaces[name] = comp["capsule"].getIRef(comp["comp"], iname) 111

else: 112

ifaces[name] = comp.interfaces[iname] 113

Component.__init__(self, ifaces, componentGraph) 114

115

def bindComponents(self, componentGraphSpec, dir): 116

R"""Binds the components in the components graph

Parse the component graph and make local bindings between the components.

"""

117

123

Initial component graph 124

componentGraph = { 125

"components": componentGraphSpec["comps"], "edges": {}} 126

127

Loop through all edges 128

for (iname1, iname2) in componentGraphSpec["edges"]: 129

130

Fetch the component of these interfaces 131

comp1 = componentGraphSpec["ifaces"][iname1][0] 132

name1 = componentGraphSpec["ifaces"][iname1][1] 133

comp2 = componentGraphSpec["ifaces"][iname2][0] 134

name2 = componentGraphSpec["ifaces"][iname2][1] 135

136

Fetch interface references 137

if type(comp1) is DictType: 138

iref1 = comp1["capsule"].getIRef(comp1["comp"], name1) 139

else: 140

iref1 = comp1.interfaces[name1] 141

if type(comp2) is DictType: 142

composite.py 3

iref2 = comp2["capsule"].getIRef(comp2["comp"], name2) 143

else: 144

iref2 = comp2.interfaces[name2] 145

146

Create bindings (directional or not) 147

if dir: 148

componentGraph["edges"][(iname1, iname2)] = \ 149

localBindOneWay(iref1, iref2) 150

else: 151

componentGraph["edges"][(iname1, iname2)] = \ 152

localBind(iref1, iref2) 153

154

Return the component graph 155

return componentGraph 156

157

158

def compositeFactory(interfaceNames={}, componentGraphDesc={}, dir=0): 159

R"""A factory for composite components

Creates a composite component including all its constituent components. The component graph is build
using local bindings (but components in the graph can be binding objects).

The first argument is a list of the interfaces of the new composite component. Each interface is represented
as a mapping from a name to a component/interface name pair. In the mapping key:(comp,ifname)
is key the name of the interface, comp the name of the component, and ifname the name of the interface
in the component comp implementing the interface key.

The second argument is the component graph specification. The component graph specification is a
directory containing a list of the components, a mapping from interface names to actual interface references
and a list of edges in the graph. Since the components are not yet created the components are specified by
a name and how to create them (class or factory and its arguments). Each component is represented by at
tuple, where the first element is the name (key) of the component and the second element is a dictionary
with information about how to create this component. "factory" is the function (or class) used to
create the component, "args" and "kw" are the arguments passed to the factory (these are optional)
and "capsule" can be used to specify which capsule this component should be created in (the local
capsule is default). The "ifaces" and "edges" part of the specification are similar to their counter
part in the component graph specification of the Composite class (the only difference is that "ifaces"
uses names for components and not their actual references).

The last argument is equal to the last argument of the constructor of the Composite class. This is an
example of the creation of a composite component with this factory:

co = compositeFactory(
{"in":("ca","ai"),"out":("cb","bo")}
{"comps":{"ca":{"factory":componentFactory,

"args":(["ai", "ao"], A)},
"cb":{"factory":componentFactory,

"args":(["bi", "bo"], B)}},
"ifaces":"ao":{("ca","ao"),"bi":("cb", "bi")},
"edges":[("ao","bi")]})

"""

160

211

Initialize structures 212

components = {}; interfaces = {} 213

componentGraphSpec = {"comps": [], "ifaces": {}, 214

"edges": componentGraphDesc["edges"]} 215

216

Create components 217

for (key, cinfo) in componentGraphDesc["comps"].items(): 218

composite.py 4

if not cinfo.has_key("args"): 219

cinfo["args"] = () 220

if not cinfo.has_key("kw"): 221

cinfo["kw"] = {} 222

if cinfo.has_key("capsule"): 223

components[key] = { 224

"capsule": cinfo["capsule"], 225

"comp": cinfo["capsule"].mkComponent(226

cinfo["factory"], cinfo["args"], cinfo["kw"])} 227

else: 228

components[key] = (229

apply(cinfo["factory"], cinfo["args"], cinfo["kw"])) 230

componentGraphSpec["comps"].append(components[key]) 231

232

Generate external interface listing 233

for (key, (comp, ifname)) in interfaceNames.items(): 234

interfaces[key] = (components[comp], ifname) 235

236

Generate internal interface listing 237

for (key, (comp, ifname)) in componentGraphDesc["ifaces"].items(): 238

componentGraphSpec["ifaces"][key] = (components[comp], ifname) 239

240

Create composite object 241

return Composite(interfaces, componentGraphSpec) 242

243

244

LocalWords: Apr Oct UK NORUT aacodefont py nodemngr parbox linewidth pt co 245

LocalWords: includegraphics hfil aaws cb ao bi IRef lbi localBind lbj comp 246

LocalWords: lbind def init componentGraph dir ldots bindComponents ifaces 247

LocalWords: iname DictType getIRef ci TupleType iref localBindOneWay ifname 248

LocalWords: compositeFactory interfaceNames componentList nameGraph args kw 249

LocalWords: cinfo mkComponent 250

