
amcomp.py 1

R"""An automata component class

Author : Anders Andersen
Created On : Mon Mar 8 11:02:17 1999
Last Modified By:
Last Modified On: Mon Jul 05 23:31:58 1999
Status : Unknown, Use with caution!

Copyright c© 1999 Lancaster University, UK and NORUT Information Technology Ltd., Norway. See COPYING
for details.

This module implements a class that can be used to create automata components. The AmComp class is
implemented with the Automata and the Component class (and it inherits the API of both these classes). An
object of the AmComp class provides three sets of interfaces: (i) control interfacess contains only one interface
a ctrl that exports the methods print state, run and stop, (ii) input interfacess that contain all the input
(signal) interfaces of the automaton, and (iii) output interfacess that contain all the output (signal) interfaces
of the automaton. The prefix a in is added to the name of all the input interfaces and the prefix a out is
added to the name of all the output interfaces.

An automata component can be created like this (ex.fc2 is an FC2 description of the automaton):

from fc2 import FC2
from amcomp import AmComp
a = AmComp(FC2(open("ex.fc2")).fc2py)

If the automaton described in ex.fc2 accepts the input signals in and out and can produce the output signal
overflow, the following interfaces are available (in the a.interfaces dictionary):

"a ctrl": The control interface
"a in on": The on input signal
"a in off": The off input signal
"a out overflow": The overflow output signal

The control interface exports the print state, run and stop methods, and the input and output signal
interfaces respectively export and import the event method.

"""

1

53

54

We need to create interfaces for the automata components 55

from lbind import * 56

from sigbind import * 57

58

The automata component is a combination of an automata and a component 59

from component import Component 60

from automata import Automata 61

62

63

class EventObj: 64

R"""Forwarding input events

Each input interface use an instance of this class to forward input events with the right argument to the
automaton.

"""

65

71

def __init__(self, amc, msg): 72

R"""Save automaton and event

Save a reference to the automaton and the name of the event of this interface.

"""

73

self.amc = amc 79

amcomp.py 2

self.msg = msg 80

81

def event(self): 82

R"""Forward input event

Forwards the input event to the automaton.

"""

83

self.amc.new_event(self.msg) 88

89

class AmComp(Automata, Component): 90

R"""Automata component

A class for automata components implemented with the Automata and the Component class.

"""

91

97

def __init__(self, fc2py): 98

R"""Initialise the automata component.

Install the automaton description and create all interfaces (including the control interface and one
interface for each input and output event).

"""

99

Automata.__init__(self, self.__event__, fc2py) 106

interfaces = self._make_ifaces() 107

interfaces["a_ctrl"] = IRef(self, ["print_state", "run", "stop"], []) 108

Component.__init__(self, interfaces, self) 109

110

def _make_ifaces(self): 111

R"""Create input and output interfaces

Use the information about the edges from all vertice to create the set of input and output interfaces.
Each input interface is mapped to a specific input event, and each output event is mapped to a
specific output interface. The name of an input interface is the name of its event with the a in
prefix, and the name of an output interface is the name of its event with the a out prefix.

"""

112

interfaces = {} 123

for (name, vertex) in self.vertice.items(): 124

if vertex.has_key("edges"): 125

for (label, events) in vertex["edges"].items(): 126

if label: 127

iname = "a_in_" + label 128

eobj = EventObj(self, label) 129

interfaces[iname] = SigSinkIRef(eobj) 130

for event in events: 131

if event.has_key("mesg"): 132

for msg in event["mesg"]: 133

iname= "a_out_" + msg 134

interfaces[iname] = SigSrcIRef() 135

return interfaces 136

137

def __event__(self, msg): 138

R"""Forward output events

Forward output events to the appropriate output (signal) interface.

"""

139

self.interfaces["a_out_" + msg].event() 144

