amecomp.py 1

R'"" An automata component class 1

Author : Anders Andersen

Created On : Mon Mar 8 11:02:17 1999

Last Modified By:

Last Modified On: Mon Jul 05 23:31:58 1999
Status : Unknown, Use with caution!

Copyright (©) 1999 Lancaster University, UK and NORUT Information Technology Ltd., Norway. See COPYING
for details.

This module implements a class that can be used to create automata components. The AnConp class is
implemented with the Aut omat a and the Conponent class (and it inherits the API of both these classes). An
object of the AmConp class provides three sets of interfaces: (i) control interfacess contains only one interface
a_ctrl that exports the methods pri nt _stat e, run and st op, (ii) input interfacess that contain all the input
(signal) interfaces of the automaton, and (iii) output interfacess that contain all the output (signal) interfaces
of the automaton. The prefix a_i n_ is added to the name of all the input interfaces and the prefix a_out _ is
added to the name of all the output interfaces.

An automata component can be created like this (ex. f ¢2 is an FC2 description of the automaton):

fromfc2 inport FC2
from anconp i nport AmConp
a = AnConp(FC2(open("ex.fc2")).fc2py)

If the automaton described in eX. f ¢2 accepts the input signals i h and out and can produce the output signal
over f | ow, the following interfaces are available (in the a. i nt er f aces dictionary):

"a_ctrl": The control interface

"a.i n_on": The on input signal

"a.in_of f": The of f input signal

"a_out overfl ow': The over fl owoutput signal

The control interface exports the print _state, run and st op methods, and the input and output signal
interfaces respectively export and import the event method.

We need to create interfaces for the automata components 55
fromlbind inport = 56
from sigbind inmport = 57
58

The automata component is a combination of an automata and a component 59
from conponent inport Conponent 60
fromautomata i nport Automata 61
62

63

cl ass Event Obj : 64
R'"" Forwarding input events 65

Each input interface use an instance of this class to forward input events with the right argument to the
automaton.

71
def __init__(self, anc, msg): 72
R'"" Save automaton and event 73

Save a reference to the automaton and the name of the event of this interface.

sel f.ant = ant 79

amcomp.py

sel f.nsg = nsg

def event(self):
R'"" Forward input event

Forwards the input event to the automaton.

sel f. anc. new_event (sel f. nmsQ)

cl ass AnConp(Aut omat a, Conponent):
R'"" Automata component

A class for automata components implemented with the Aut omat a and the Conponent class.

def __init_ (self, fc2py):
R'" " Initialise the automata component.

80

81

82

83

88

89

90

91

97

98

99

Install the automaton description and create all interfaces (including the control interface and one

interface for each input and output event).

Automata. __init_ (self, self.__event__, fc2py)
interfaces = self. nake_ifaces()
interfaces["a_ctrl"] = IRef(self, ["print_state"
Conponent. __init__ (self, interfaces, self)

def _make_ifaces(self):
R'"" Create input and output interfaces

Use the information about the edges from all vertice to create the set of input and output interfaces.
Each input interface is mapped to a specific input event, and each output event is mapped to a
specific output interface. The name of an input interface is the name of its event with the a_i n_

prefix, and the name of an output interface is the name of its event with the a_out _ prefix.

interfaces = {}
for (name, vertex) in self.vertice.itens():
if vertex.has_key("edges"):

for (label, events) in vertex|["edges"].itens():

i f I abel
iname = "a_in_ " + | abe
eobj = Event bj (self, | abel)

i nterfaces[iname] = SigSinkl Ref (eobj)

for event in events:
i f event.has_key("nesg"):
for msg in event["nesg"]:
i name= "a_out_" + nsg

interfaces[iname] = SigSrcl Ref()

return interfaces

def _ _event_ (self, nsQ):
R'"" Forward output events

Forward output events to the appropriate output (signal) interface.

self.interfaces["a_out _

+ neg] . event ()

