
Performance Evaluation II
Distributed systems

and web applications
Steffen Viken Valvåg

Microsoft

Just because the wheels are
spinning, it doesn’t mean the car is
moving!

• In a distributed system there are many moving parts.
• To monitor performance, we need to measure the end-to-
end performance, using meaningful metrics.
• We also need to monitor the performance of each part to
identify problems. (Is the wheel jammed?)

Data
Parallelism
• Bake many pizzas in one oven
• (Don’t use many ovens to bake
one pizza.)

• SIMD [Flynn 1966]
• Apply the same instruction to multiple data

streams

Data Parallel Hardware Architectures

Data Parallel Software Architectures

• Execute the same (sequential) code on multiple distinct pieces of data
in parallel
• One independent task to execute per piece of data
• Typically designed for a shared-nothing cluster

• Run-time systems to orchestrate:
• Storage and partitioning of the input data set(s)
• Distribution of data to relevant machines
• Parallel execution (load-balanced and fault-tolerant)
• Collection/collation of output/results

Toaster Analogy

Data Set

Toaster Analogy

Data Set

Data Partitioning

Toaster Analogy

Parallel Processing Engine

Data Set

Data Partitioning

MapReduce Programming Model

• Specify a computation in terms of:
• A map function to apply to each input record
• An intermediary key space that determines how to group records output by the map

function
• A reduce function that defines how to aggregate groups of intermediate records for

the final output
• Map and reduce functions are typically sequential

• Map executes in parallel for different input partitions; invoked once per input record
• Reduce executes in parallel for different partitions of the intermediate key space;

invoked once per unique intermediate key
• Execution amounts to executing a certain number of map tasks, followed

by a certain number of reduce tasks
• Two-phase execution dictated by data dependencies

Dryad/DryadLINQ

• Compose a flexible communication graph with customizable vertices
passing data over channels
• Vertex code is typically sequential, invoked with a set of input and output

channels
• Higher-level data-parallel abstractions akin to MapReduce available through

DryadLINQ

• Executed as a collection of tasks, where each task executes one
vertex, and independent tasks may execute in parallel
• Split into stages that manifest synchronization barriers

Data Dependency Graphs
• Tasks require certain input data, and produce certain

output data that other tasks may depend on
• Below is a MapReduce graph with 3 map tasks and 2 reduce

tasks; Dryad allows more flexible graph topologies
• Virtualized execution plan

Apache Hadoop

• Hadoop is a widely deployed implementation of MapReduce
• Also a popular research vehicle

• Jobs are submitted to a central job tracker component
• Makes all scheduling decisions, tracking multiple concurrent jobs

• Every node runs a task tracker that communicates regularly with the job
tracker to obtain scheduling decisions
• Each task tracker has a number of task execution slots, bounding the number of

concurrent tasks on a node
• Free slots are filled by requesting additional tasks from the job tracker; the received

tasks may belong to any ongoing job
• Input and output data are stored in a block-based distributed file system

(HDFS)
• Intermediate data stored locally, outside HDFS

Hadoop Architecture

• Master/worker pattern with task trackers that are loosely coupled to
the job tracker
• Communicating through heartbeat RPCs
• Same architecture for the underlying HDFS

Job Tracker Task TrackerTask TrackerTask TrackerTask Tracker

Heartbeat

Task

Evaluating the performance of Hadoop

• 100+ configuration options for MapReduce
• 100+ configuration options for the underlying HDFS
• Selecting factors was a nightmare!
• I relied on folklore and recommendations in the documentation for

“good” configurations, and used those as starting points.

HDFS Block Size

HDFS Block Size

Throughput

Anomaly: Idle Time
• Hadoop’s task trackers communicate with the central

job tracker using heartbeat RPCs
• Heartbeats occur at most every 3 seconds, and task

completion is only reported then
• Consequently, task trackers may go idle if tasks are short-

lived
• Since tasks tend to start at the same time (upon receiving a

heartbeat response), they also tend to finish at the same
time

Time

Slot 1

Slot 2

Anomaly: Idle Time

• Unexpected interaction with HDFS block size
• Bigger block size => more work per mapper => less idle time

• For Grep, task trackers were idle 34% of the time using the
default Hadoop configuration
• A simple patch allowed completed tasks to be reported

immediately
• Hadoop 0.21 introduced a new option that may help
• mapreduce.tasktracker.outofband.heartbeat
• Enable this to send out-of-band heartbeats upon task completion

Anomaly: Multi-Core CPU Utilization

• For sequential scanning of data, and whenever costly UDFs are invoked,
Hadoop quickly becomes CPU bound
• Multiple cores are not well utilized, so there may well be spare CPU cycles that go

unused
• Increasing the number of concurrent processes is ineffective, because of memory

footprint and less optimal I/O access patterns

• Remedy: employ multiple threads to read, parse and process records in
parallel
• Fully exploits all cores when costly UDFs are employed

• By implementing a similar approach in Hadoop, plugging in multi-threaded
Cogset code as a custom input format, performance was greatly improved

• The Hadoop optimizations close some of the gap
• Cogset still performs significantly better

MR/DB Results for 25 nodes

• The Hadoop optimizations close some of the gap
• Cogset still performs significantly better

MR/DB Results for 25 nodes

Performance
in web

applications

Single-page web applications (SPAs)

Load a single web
page into the

browser

Dynamically update
the page based on

user interaction

Typical architecture

Frontend (web browser)

Middle-tier service
(Backend For Frontend)

Backend service

Backend service Backend service

Backend service

Relevant metrics for web applications

• Backend throughput

• Latency for individual requests

• Bandwidth consumption

• Browser frame rate

• End-user perceived latency (EUPL)

• The time from a click until the UI has finished updating

• Initial page load time

• Javascript bundle size matters! => minification, compression, staged loading

• Cost of goods sold (COGS)

• How much money did this cost us

Browser quirks

• Max 6 concurrent connections
• => domain sharding
• => pipe requests through a websocket
• => HTTP/2

• Updating the DOM is expensive
• => React, a library to efficiently update the DOM tree based on a synthetic

DOM tree

• Javascript is single-threaded, but highly concurrent:
• => Redux, to manage state in a predictable way in the face of concurrency

Correlating events

• A customer reports that the UI says “something went wrong”.
• How do we figure out what went wrong?

• We see that EUPL is high for some users.
• Why?

• To answer questions like these, we must be able to correlate log
events produced by multiple services.
• => Use randomly generated GUIDs called “correlation IDs” and pass them

along with requests, making sure they are logged on both ends.

Demo time

