Performance Evaluation II Distributed systems and web applications

Steffen Viken Valvåg

Microsoft

Just because the wheels are spinning, it doesn't mean the car is moving!

- In a distributed system there are many moving parts.
- To monitor performance, we need to measure the end-toend performance, using meaningful metrics.
- We also need to monitor the performance of each part to identify problems. (Is the wheel jammed?)

Data Parallelism

- Bake many pizzas in one oven
- (Don't use many ovens to bake one pizza.)

Data Parallel Hardware Architectures

- SIMD [Flynn 1966]
 - Apply the same instruction to multiple data streams

Data Parallel Software Architectures

- Execute the same (sequential) code on multiple distinct pieces of data in parallel
 - One independent *task* to execute per piece of data
 - Typically designed for a shared-nothing cluster
- Run-time systems to orchestrate:
 - Storage and partitioning of the input data set(s)
 - Distribution of data to relevant machines
 - Parallel execution (load-balanced and fault-tolerant)
 - Collection/collation of output/results

Toaster Analogy

Toaster Analogy

Data Partitioning

Toaster Analogy

Data Partitioning

Parallel Processing Engine

MapReduce Programming Model

- Specify a computation in terms of:
 - A *map* function to apply to each input record
 - An intermediary key space that determines how to group records output by the map function
 - A *reduce* function that defines how to aggregate groups of intermediate records for the final output
- Map and reduce functions are typically sequential
 - Map executes in parallel for different input partitions; invoked once per input record
 - Reduce executes in parallel for different partitions of the intermediate key space; invoked once per unique intermediate key
- Execution amounts to executing a certain number of map tasks, followed by a certain number of reduce tasks
 - Two-phase execution dictated by data dependencies

Dryad/DryadLINQ

- Compose a flexible communication graph with customizable *vertices* passing data over *channels*
 - Vertex code is typically sequential, invoked with a set of input and output channels
 - Higher-level data-parallel abstractions akin to MapReduce available through DryadLINQ
- Executed as a collection of tasks, where each task executes one vertex, and independent tasks may execute in parallel
 - Split into *stages* that manifest synchronization barriers

Data Dependency Graphs

- Tasks require certain input data, and produce certain output data that other tasks may depend on
 - Below is a MapReduce graph with 3 map tasks and 2 reduce tasks; Dryad allows more flexible graph topologies
 - Virtualized execution plan

Apache Hadoop

- Hadoop is a widely deployed implementation of MapReduce
 - Also a popular research vehicle
- Jobs are submitted to a central job tracker component
 - Makes all scheduling decisions, tracking multiple concurrent jobs
- Every node runs a task tracker that communicates regularly with the job tracker to obtain scheduling decisions
 - Each task tracker has a number of task execution *slots*, bounding the number of concurrent tasks on a node
 - Free slots are filled by requesting additional tasks from the job tracker; the received tasks may belong to any ongoing job
- Input and output data are stored in a block-based distributed file system (HDFS)
 - Intermediate data stored locally, outside HDFS

Hadoop Architecture

- Master/worker pattern with task trackers that are loosely coupled to the job tracker
 - Communicating through heartbeat RPCs
 - Same architecture for the underlying HDFS

Evaluating the performance of Hadoop

- 100+ configuration options for MapReduce
- 100+ configuration options for the underlying HDFS
- Selecting factors was a nightmare!
- I relied on folklore and recommendations in the documentation for "good" configurations, and used those as starting points.

HDFS Block Size

Throughput

HDFS Block Size

Anomaly: Idle Time

- Hadoop's task trackers communicate with the central job tracker using heartbeat RPCs
 - Heartbeats occur at most every 3 seconds, and task completion is only reported then
 - Consequently, task trackers may go idle if tasks are shortlived
 - Since tasks tend to start at the same time (upon receiving a heartbeat response), they also tend to finish at the same time

Anomaly: Idle Time

- Unexpected interaction with HDFS block size
 - Bigger block size => more work per mapper => less idle time
- For Grep, task trackers were idle **34%** of the time using the default Hadoop configuration
 - A simple patch allowed completed tasks to be reported immediately
- Hadoop 0.21 introduced a new option that may help
 - mapreduce.tasktracker.outofband.heartbeat
 - Enable this to send out-of-band heartbeats upon task completion

Anomaly: Multi-Core CPU Utilization

- For sequential scanning of data, and whenever costly UDFs are invoked, Hadoop quickly becomes CPU bound
 - Multiple cores are not well utilized, so there may well be spare CPU cycles that go unused
 - Increasing the number of concurrent processes is ineffective, because of memory footprint and less optimal I/O access patterns
- Remedy: employ multiple threads to read, parse and process records in parallel
 - Fully exploits all cores when costly UDFs are employed
- By implementing a similar approach in Hadoop, plugging in multi-threaded **Cogset** code as a custom input format, performance was greatly improved

MR/DB Results for 25 nodes

- The Hadoop optimizations close some of the gap
 - Cogset still performs significantly better

MR/DB Results for 25 nodes

- The Hadoop optimizations close some of the gap
 - Cogset still performs significantly better

Performance in web applications

o Soutlook

Opening your mailbox...

Single-page web applications (SPAs)

Load a single web page into the browser

Dynamically update the page based on user interaction

Typical architecture

Relevant metrics for web applications

- Backend throughput
- Latency for individual requests
- Bandwidth consumption
- Browser frame rate
- End-user perceived latency (EUPL)
 - The time from a click until the UI has finished updating
- Initial page load time
 - Javascript bundle size matters! => minification, compression, staged loading
- Cost of goods sold (COGS)
 - How much money did this cost us

Browser quirks

- Max 6 concurrent connections
 - => domain sharding
 - => pipe requests through a websocket
 - => HTTP/2
- Updating the DOM is expensive
 - => React, a library to efficiently update the DOM tree based on a synthetic DOM tree
- Javascript is single-threaded, but highly concurrent:
 - => Redux, to manage state in a predictable way in the face of concurrency

Correlating events

- A customer reports that the UI says "something went wrong".
- How do we figure out what went wrong?
- We see that EUPL is high for some users.
 - Why?
- To answer questions like these, we must be able to <u>correlate</u> log events produced by multiple services.
 - => Use randomly generated GUIDs called "correlation IDs" and pass them along with requests, making sure they are logged on both ends.

Demo time