
Performance Evaluation
Åge Kvalnes

Microsoft

Performance Evaluation

Computer system designers, administrators, and users all have a goal of
providing the highest performance at the lowest cost

A performance evaluation is a quantification of performance and cost

A motivating example

Instance vCPU RAM TMP storage Price

D2 v3 2 8GiB 16GiB $0.192/hour

D4 v3 4 16.00 GiB 32 GiB $0.384/hour

D8 v3 8 32.00 GiB 64 GiB $0.768/hour

For there to be a profit margin,
cost of service must have been
quantified, thoroughly

Windows Virtual Machine pricing in Azure

But if I want to use this service for my system, how do I know whether I should
select a D2 v3 or a D8 v3?
=> You need to conduct a performance evaluation of your system

But what is performance

Code example:

Quantifying the performance of a simple program by instrumenting the
program

Some learnings from the code example

Execution time can be used as a metric for performance. But, execution time varies with workload (#
items to sort and their distribution)

Is there a better performance metric? What about execution time/#items (i.e., execution time per
item)?

• 2/8 = 0.25
• 21/128 = 0.16
• 132499/262144 = 0.51

Execution time per item is not constant (NLogN algorithm)..and we have an outlier for 8 items

Note:
• A performance evaluation involves selection of one or more workloads
• To provide meaningful results, workloads must be representative of system use in real life
• Beware of outliers in the performance data (use statistical techniques to remove)
• Background load in the system under test can be a source of performance variance

Another code example

Performance data could be obtained through program instrumentation,
but this approach was somewhat cumbersome

Code example:

Automating the instrumentation by help from the compiler (profiling)

Other profiling approaches

Compiler-automated profiling simplifies instrumentation, but adds a lot of
overhead. In general, cannot profile without affecting system behavior

Statistical profiling: interrupt program regularly and collect information about
the currently executing instruction. Correlate with a program symbol table to
obtain a performance profile. Overhead can be traded for accuracy

Hardware-supported profiling: most modern CPUs have built-in capabilities for
counting events such as # instructions executed, # cache misses, +++

• Have a look at the Intel Architecture Manuals to see capabilities

See here for a large list of profiling tools with various capabilities

https://software.intel.com/en-us/articles/intel-sdm
https://en.wikipedia.org/wiki/List_of_performance_analysis_tools

Quantifying performance, in practice

• A monitor tool is typically run on machines hosting a production service

• The monitor observes and collects system performance statistics (counters and
logs) provided through OS interfaces and from service instrumentation
• Look at Event Tracing for Windows for how to instrument an application to produce trace

events and consume trace events efficiently and Windows Performance Monitor for
inspecting traces and counters

• Important to instrument such that a request can be tracked across system components
• Create correlation ID when request enters system and pass across component calls. All log messages

include correlation ID

RealTimeMetricUtilities.LogLatencyMetric(
this.griffinRequestContext.Diagnostics.RealTimeMetricStore,
"ObjectStoreClient",
"DeleteItem",
RealTimeMetricConstants.YggdrasilRealTimeMetricMetadata,
RealTimeMetricConstants.ObjectStoreSetItemNetworkLatencyMetricName,
coprocResult.PerformanceRecord.ServicePerformanceList[0].SumWaitTimeUs / 1000);

Example application instrumentation

https://msdn.microsoft.com/en-us/library/windows/desktop/bb968803(v=vs.85).aspx
https://technet.microsoft.com/library/cc749249.aspx

Windows performance counters

Windows (and Linux) is heavily instrumented to provide key
performance data

All this perfmon data is
available programmatically
through performance counter APIs

More motivation for performance evaluation

• Validating that performance requirements are met
• 99% of all requests should complete in less than 500ms

• Evaluating design alternatives
• Should we buy those expensive SSDs or can HDDs be used?

• Finding performance bottlenecks
• Shifting that bottleneck to somewhere else can reduce cost

• Characterizing system load
• Applications that stress different resources can potentially be packed on the

same machine, thereby reducing cost
• Forecasting future HW resource needs. It can take months from order to

delivery. Growth estimation for next 6 months common in industry

Systematic performance evaluation

1. State goals and define the system
• System boundaries affect selection of performance metrics

• If client requests have to pass through an intermediate network, client-to-service
network latency is perhaps not a viable performance metric

• If the system runs in a virtualized environment with other competing VMs, a more
thorough approach to outlier removal is perhaps needed

2. List services and outcomes
• Determine what services the system provides, and what requests can be

made to each system component.

• Involves learning about system architecture and how things work

• List possible outcomes of use of each service and component requests

Systematic performance evaluation

3. Select metrics. They are generally related to speed, reliability, and
availability

• If requests succeed
• Typically response time, throughput, utilization

• If requests fail
• What is the observed error probability and time between errors?

• If the system fails (or a component)
• What is the likelihood and duration

• Be prepared to iterate over metric selection based on observations

Systematic performance evaluation

4. List parameters that affect performance and iterate based on experience
• System parameters include hardware and software parameters

• Workload parameters must be carefully selected and be representative of real load

0

20

40

60

80

100

120

0

100

200

300

400

500

600

700

800

P
er

ce
n

t

Fr
eq

u
en

cy

edges in file

Frequency of # edges per file for 10000 files

Frequency Cumulative Percent

Systematic performance evaluation

5. Select factors to study. Parameters that will be varied are called
factors

• Parameters that are likely to have high impact on performance are factor
candidates

• Ideally all parameters should be factors, but this is not viable. Be very scared
of that parameter not selected as a factor

6. Select evaluation technique
• Analytical modeling. Low accuracy, but cheap

• Simulation. Moderate accuracy and moderate cost

• Measuring a real system. You have to build it

• All techniques may have to be used

Systematic performance evaluation

7. Select workload
• For analytical modeling, probability of different requests

• For simulation, one can use a trace from a real system

• For measurement, representative of system usage

0

20

40

60

80

100

120

0

50

100

150

200

250

300

P
er

ce
n

t

Fr
eq

u
en

cy

ACEs

Frequency of ACEs for 10000 files

Frequency Cumulative Percent

Synthetic data, but generated based
on trace samples

Systematic performance evaluation

8. Design experiments
• Decide on a sequence of experiments that offer maximum information with

minimal effort

• Useful to conduct some initial experiments to determine the sensitivity of
factor levels. This can significantly reduce the # experiments needed

9. Analyze and interpret data
• Can experiments be repeated with the same outcomes? If not, variability

must be taken into account

• Do not fall into the using-only-averages trap
• Standard deviation (what is normal)

• Percentiles are great (75% of all requests have this performance, 90% this, 95% this, etc.)

Systematic performance evaluation

10. Present results
• Keep it simple and focus on the key outcomes
• Present graphs, not formulas
• Graphs must be self-contained (label each axis, descriptive legends, etc.)
• Hindsight is 20/20. Be prepared to repeat all steps based on the knowledge gained at this

point..

0

500

1000

1500

2000

La
te

n
cy

 (
m

s)

Requested ingest rate

Insertions, client e2e latency

99th 95th 90th 75th

Common pitfalls

Methodology

Unsystematic

Incorrect metrics

Wrong workload

Wrong technique

Bad experiments

Completeness

Overlooking
parameters

Ignore factors

Level of detail

Goals

None

Biased

Analysis

None

Erronous

Too complex

Ignoring levels

Ignoring errors

Ignoring variability

Ignoring outliers

Presentation

Ignoring social
aspects

Omitting
assumptions

Omitting
limitations

Concluding remarks

• Be systematic

• Do not trust results until they have been validated. And even then, expect
surprises

Performance evaluation is an art

