ι	וו	1
THE	AR	CTI

UNIVERSITY OF NORWAY

Parallelization: process and architectures

Inf-2202 Concurrent and Data-intensive Programming Fall 2017

Lars Tiede (lars.tiede@uit.no)

Outline

- The parallelization process
 - "How to parallelize programs"
 - Based mostly on book chapters 2 and 3 in *Parallel Computer* Architecture: A Hardware/Software Approach. David Culler, J.P. Singh, Anoop Gupta. Morgan Kaufmann. 1998
 - Also a few of Lars Ailo Bongo's slides from last year (lectures 5-6)
- Parallel (hardware) architectures
 - If we have time! Just for an overview of what's out there
 - CPUs with special instructions, multicore CPUs, GPUs, clusters, clouds...

Parallelization process: goals

- High performance
 - solve larger problems, solve them faster
- Efficient resource utilization
 - waste no time, energy, money, on processors being *idle* or busy with overhead (work)
- Low developer effort
 - parallel program should be reasonably simple, little overhead (code) compared to sequential program
- Goals are sometimes at odds with each other
- Different hardware architectures favor different solutions

Performance: (Maximum) speedup

• Speedup factor:

 $S(p) = \frac{Execution \ time \ on \ one \ processor \ (best \ seq \ algorithm)}{Execution \ time \ using \ p \ processors \ (parallel \ algorithm)} = \frac{t_s}{t_p}$

Maximum speedup? -> Amdahl's law

Amdahl's law

- Observation: Programs contain sections that can be parallelized, and sections that are serial
- Let f be fraction of program spent in serial sections (0..1). Assume we can parallelize uniformly over p processors (ideal). Assume the parallel program doesn't have overhead compared to the serial program (ideal). Then:

$$t_p = ft_s + (1 - f)t_s/p$$

$$S(p) = \frac{t_s}{t_p} = \frac{t_s}{ft_s + (1 - f)t_s/p} = \frac{p}{1 + (p - 1)f}$$

Maximum speedup (Amdahl's law)

• For p processors, speedup is:

$$S(p) = \frac{p}{1 + (p-1)f}$$

Maximum speedup: f=0 (i.e. no serial sections in program)

$$S(p) = p$$

Speedup against number of processors

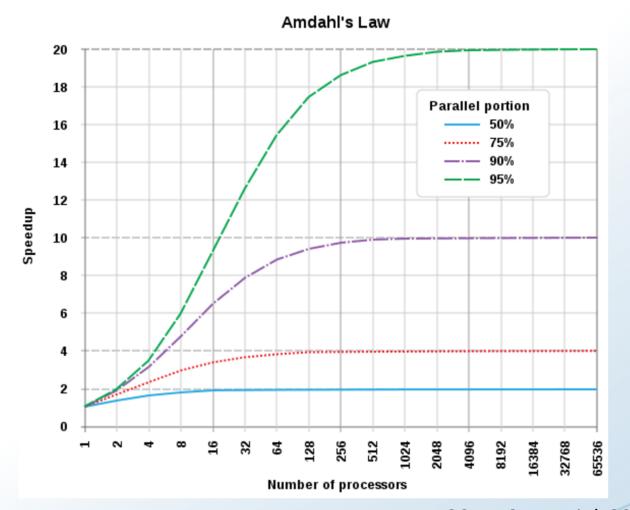


Image CC-BY-SA Daniels220 on wikipedia

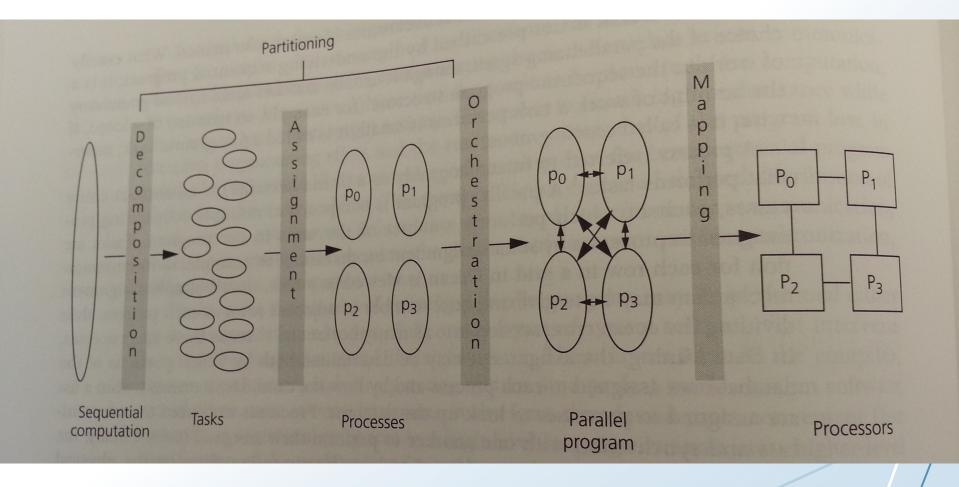
Superlinear speedup

- In practice, we sometimes measure speedups greater than p ("superlinear speedup")
- This due to:
 - Hardware, for example extra memory in multiprocessor system
 - Nondeterministic algorithms
 - Search algorithms (e.g. when finding result in p-th partition)

Parallelization process: nomenclature

- Task: piece of work
- Process/thread: entity that performs the work
- Processor/core: physical processor cores

Parallelization process: steps (overview)



Parallelization process: decomposition

- Split computation into a collection of tasks
- Goal: expose opportunities for parallelism
- Task granularity (-> # tasks) limits parallelism
- Deals mostly with algorithm, less with hardware architecture

Slightly abstract example: pizza preparation

- Task decomposition from simple sequential algorithm:
 - For each of the many pizzas (each with a spec) you want to make:
 - Prepare dough
 - Let dough rise
 - Roll out dough
 - Sauce
 - Toppings (several tasks, one for each? Tasks for preparing toppings?)
 - Bake
 - Cut to slices

Very concrete example: word count in Python

```
f = open("huge_text_file.txt", "r")
wordcount = {} # { word: count }
```

```
for w in f.read().split():
    wordcount[w] = wordcount.get(w,0) + 1
```

```
for item in wordcount.items():
    print("{}\t{}".format(*item))
```

- Possible decomposition into tasks that expose opportunities for parallelism?
 - Read the file into text. Perhaps not whole but in chunks? (Many tasks then)
 - Split text(s) at word boundaries, yield word after word
 - Count word(s) (could go crazy and say it's one task per word)
 - Print result
- Is the above the only decomposition?

Common decomposition tactics (given a sequential program)

- Look at loops in the sequential program can we decompose a loop into its iterations?
 - Works well if an iteration does not depend on the result of a previous iteration
 - If an iteration uses results of earlier iterations, we have a *data dependency* that will at least cost us later, maybe make parallelization outright impossible
 - If the sequence of iterations is critical wrt correctness, we call the loop a "sequential loop". Can't parallelize this.
- Maybe rewrite loops?
 - We may get rid of data dependencies by using private instead of shared data structures (but this necessitates merging those later on)
- Modify algorithm or use another one
 - Requires good understanding of the underlying problem

Parallelization process: assignment

- Goal: load balancing
 - All processes should do equal amount of work
 - Important for performance and resource efficiency
- Goal: reduce communication volume
 - Communication is not free (might be very expensive), so send around minimum amount of data, and minimum amount of messages
- Deals mostly with algorithm, less with hardware architecture
- Two types: static and dynamic (next slides)

Static and dynamic assignment

- Static assignment of tasks to processes
 - Algorithmic mapping
 - Example: if we have n tasks and m processes, assign task $i \in (1, ..., n)$ to process $\lfloor i/_m \rfloor$
 - Low overhead
 - Works well if workload is uniform across tasks. If not, will lead to load imbalance.
- Dynamic assignment of tasks to processes
 - Pool of available tasks
 - Typically balances load better than static assignment
 - More overhead
- In our examples?

Assignment in our examples: pizza prep

- Static example: each cook does the whole process for a predetermined set of n/p pizzas.
 - Works if every cook operates at same speed, every pizza takes equally long to prepare
 - Otherwise: load imbalance. The slowest cook who got the most complex pizzas to make will cause overall runtime to go up
- Dynamic example: each cook does the whole process for a pizza, then picks another pizza spec to make from a pool
 - Balances workload better among
 - Overhead: need a pool of pizza specs to make, communication and synchronization for pool's operations

Assignment in our examples: word count

- Static example: text is cut into p equally sized chunks (size given in bytes), each processor does one chunk
 - Works well if word length is uniform over the whole text
 - If not: some processes have many words to count, others fewer. Load imbalance.
- Dynamic example: text is cut into 100*p equally sized chunks, chunks are placed into a work pool, processors pick chunks from pool
 - Balances work better
 - Overhead: need pool, need communication and synchronization for pool's operation

Kinds of concurrency in to seek out in partitioning

- (Partitioning = decomposition + assignment)
- Data parallelism
 - Processes do same computation on different parts of the data
 - Opportunity for parallelism grows with data size
 - Most often used
- Functional parallelism
 - Processes do different computations, often in the form of pipelined computation
 - Typically used in combination with data parallelism
 - Often modest amount

Concurrency in our examples: pizza prep

- Data parallelism
 - Many cooks can prepare pizza in parallel (from a-z), assuming plenty resources and place
- Functional parallelism
 - Cooks specialize on one (or short sequence of) tasks
 - Pass intermediate results between cooks
 - Pizza prep pipeline.
- Best solution might use both functional and data parallelism

Concurrency in our examples: word count

- Data parallelism
 - if we split the text into p smaller chunks, we can let p processes count words in the individual chunks
 - Do we need/want chunk-local word count that must be merged at the end? Or rather global word count that all processes write into?
- Functional parallelism: maybe pipelined processes for
 - text loading
 - splitting into chunks
 - count words in chunks
 - merge and print results
- Best solution might use both functional and data parallelism (but sketched functionally parallel partitioning probably not good)

Parallelization process: orchestration

- Goals:
 - Reduce communication cost
 - Reduce synchronization cost
 - Locality of data
 - Efficient scheduling
 - Reduce overhead
- Specific to computer architecture, programming model, and programming language

Orchestration in our examples: pizza prep

- Pizza prep:
 - Determine "communication lanes". Pass intermediate results directly from one cook to another? Or use a big central table in the kitchen to stash them?
 - Determine when and how to pass around intermediate results between cooks
 - Determine where to store, perhaps cache, supplies
 - ..
- Word count:
 - Shared memory? Or message passing? Or does the language/library we use have other comm/sync primitives?

Parallelization process: mapping

- Specific to system or programming environment
 - Parallel system resource allocator
 - Queuing systems
 - OS scheduler

Summary: goals of the parallelization process

Step	Architecture dependent?	Major performance goals
Decomposition	Mostly no	Expose enough concurrency but not too much
Assignment	Mostly no	Balance workloadReduce communication volume
Orchestration	Yes	 Reduce noninherent communication via data locality Reduce communication and synchronization cost as seen by the processor Reduce serialization to shared resources Schedule tasks to satisfy dependencies early
Mapping	Yes	Put related threads on the same core if necessaryExploit locality in chip and network topology

Parallel hardware architectures

- Subset of chapter 6 from "Computer Organization and Design"
 Google knows this book, the library probably too
- These slides cannot be published on a publically accessible web site. Distribution through other channel (will be announced on slack)

Common parallel hardware architectures - overview

- CPUs
 - Vector and multimedia instructions
 - Hyperthreading
 - Multicore
- GPUs
 - Plenty cores
 - plenty*plenty threads, switching between them super fast
 - But: groups of threads run in lockstep (if/then/else possible, but threads that don't enter some branch will be idle)
 - Double-But: rabbit hole
- Clusters
 - Plenty of computers connected through a network
 - Requires programming with message passing (at least on low abstraction level)