
Parallelization: process and architectures

Inf-2202 Concurrent and Data-intensive Programming
Fall 2017
Lars Tiede (lars.tiede@uit.no)



Outline

• The parallelization process
– “How to parallelize programs”
– Based mostly on book chapters 2 and 3 in Parallel Computer 

Architecture: A Hardware/Software Approach. David Culler, J.P. 
Singh, Anoop Gupta. Morgan Kaufmann. 1998

– Also a few of Lars Ailo Bongo’s slides from last year (lectures 5-
6)

• Parallel (hardware) architectures
– If we have time! Just for an overview of what’s out there
– CPUs with special instructions, multicore CPUs, GPUs, clusters, 

clouds…



Parallelization process: goals

• High performance
– solve larger problems, solve them faster

• Efficient resource utilization
– waste no time, energy, money, on processors being idle or busy with 

overhead (work)

• Low developer effort
– parallel program should be reasonably simple, little overhead (code) 

compared to sequential program

• Goals are sometimes at odds with each other
• Different hardware architectures favor different solutions



Performance: (Maximum) speedup

• Speedup factor:

! " = $%&'()*+, )*-& +, +,& ./+'&00+/ (2&0) 0&3 456+/*)7-)
$%&'()*+, )*-& (0*,6 . ./+'&00+/0 (.4/455&5 456+/*)7-) = )9

):

• Maximum speedup? -> Amdahl’s law



Amdahl’s law

• Observation: Programs contain sections that can be 
parallelized, and sections that are serial

• Let f be fraction of program spent in serial sections (0..1). 
Assume we can parallelize uniformly over p processors (ideal). 
Assume the parallel program doesn’t have overhead 
compared to the serial program (ideal). Then:

!" = $!% + ⁄(1 − $)!% ,

- , = !%
!"

= !%
$!% + ⁄(1 − $)!% , = ,

1 + , − 1 $



Maximum speedup (Amdahl’s law)

• For p processors, speedup is:

! " = "
1 + " − 1 '

• Maximum speedup: f=0 (i.e. no serial sections in program)

! " = "



Speedup against number of processors

Image CC-BY-SA Daniels220 on wikipedia



Superlinear speedup

• In practice, we sometimes measure speedups greater than p 
(“superlinear speedup”)

• This due to:
– Hardware, for example extra memory in multiprocessor system
– Nondeterministic algorithms
– Search algorithms (e.g. when finding result in p-th partition)



Parallelization process: nomenclature

• Task: piece of work
• Process/thread: entity that performs the work
• Processor/core: physical processor cores



Parallelization process: steps (overview)



Parallelization process: decomposition

• Split computation into a collection of tasks
• Goal: expose opportunities for parallelism
• Task granularity (-> # tasks) limits parallelism
• Deals mostly with algorithm, less with hardware architecture



Slightly abstract example: pizza preparation

• Task decomposition from simple sequential algorithm:
– For each of the many pizzas (each with a spec) you want to make:
– Prepare dough
– Let dough rise
– Roll out dough
– Sauce
– Toppings (several tasks, one for each? Tasks for preparing toppings?)
– Bake
– Cut to slices



Very concrete example: word count in Python

f = open(“huge_text_file.txt”, “r”)
wordcount = {} # { word: count }

for w in f.read().split():
wordcount[w] = wordcount.get(w,0) + 1

for item in wordcount.items():
print(“{}\t{}”.format(*item))

• Possible decomposition into tasks that expose opportunities for 
parallelism?
– Read the file into text. Perhaps not whole but in chunks? (Many tasks 

then)
– Split text(s) at word boundaries, yield word after word
– Count word(s) (could go crazy and say it’s one task per word)
– Print result

• Is the above the only decomposition?



Common decomposition tactics (given a sequential 
program)

• Look at loops in the sequential program - can we decompose a loop into 
its iterations?
– Works well if an iteration does not depend on the result of a previous iteration
– If an iteration uses results of earlier iterations, we have a data dependency that will 

at least cost us later, maybe make parallelization outright impossible
– If the sequence of iterations is critical wrt correctness, we call the loop a 

“sequential loop”. Can’t parallelize this.

• Maybe rewrite loops?
– We may get rid of data dependencies by using private instead of shared data 

structures (but this necessitates merging those later on)

• Modify algorithm or use another one
– Requires good understanding of the underlying problem



Parallelization process: assignment

• Goal: load balancing
– All processes should do equal amount of work
– Important for performance and resource efficiency

• Goal: reduce communication volume
– Communication is not free (might be very expensive), so send around 

minimum amount of data, and minimum amount of messages

• Deals mostly with algorithm, less with hardware architecture

• Two types: static and dynamic (next slides)



Static and dynamic assignment

• Static assignment of tasks to processes
– Algorithmic mapping
– Example: if we have ! tasks and " processes, assign task # ∈ (1, … , !)

to process ⁄+ ,
– Low overhead
– Works well if workload is uniform across tasks. If not, will lead to load 

imbalance.
• Dynamic assignment of tasks to processes

– Pool of available tasks
– Typically balances load better than static assignment
– More overhead

• In our examples?



Assignment in our examples: pizza prep

• Static example: each cook does the whole process for a 
predetermined set of n/p pizzas.
– Works if every cook operates at same speed, every pizza takes equally 

long to prepare
– Otherwise: load imbalance. The slowest cook who got the most 

complex pizzas to make will cause overall runtime to go up

• Dynamic example: each cook does the whole process for a 
pizza, then picks another pizza spec to make from a pool
– Balances workload better among 
– Overhead: need a pool of pizza specs to make, communication and 

synchronization for pool’s operations



Assignment in our examples: word count

• Static example: text is cut into p equally sized chunks (size 
given in bytes), each processor does one chunk
– Works well if word length is uniform over the whole text
– If not: some processes have many words to count, others fewer. Load 

imbalance.

• Dynamic example: text is cut into 100*p equally sized chunks, 
chunks are placed into a work pool, processors pick chunks 
from pool
– Balances work better
– Overhead: need pool, need communication and synchronization for 

pool’s operation



Kinds of concurrency in to seek out in partitioning

• (Partitioning = decomposition + assignment)

• Data parallelism
– Processes do same computation on different parts of the data
– Opportunity for parallelism grows with data size
– Most often used

• Functional parallelism
– Processes do different computations, often in the form of pipelined 

computation
– Typically used in combination with data parallelism
– Often modest amount



Concurrency in our examples: pizza prep

• Data parallelism
– Many cooks can prepare pizza in parallel (from a-z), assuming plenty 

resources and place

• Functional parallelism
– Cooks specialize on one (or short sequence of) tasks
– Pass intermediate results between cooks
– Pizza prep pipeline.

• Best solution might use both functional and data parallelism



Concurrency in our examples: word count

• Data parallelism
– if we split the text into p smaller chunks, we can let p processes count 

words in the individual chunks
– Do we need/want chunk-local word count that must be merged at the 

end? Or rather global word count that all processes write into?

• Functional parallelism: maybe pipelined processes for
– text loading
– splitting into chunks
– count words in chunks
– merge and print results

• Best solution might use both functional and data parallelism (but 
sketched functionally parallel partitioning probably not good)



Parallelization process: orchestration

• Goals:
– Reduce communication cost
– Reduce synchronization cost
– Locality of data
– Efficient scheduling
– Reduce overhead

• Specific to computer architecture, programming model, and 
programming language



Orchestration in our examples: pizza prep

• Pizza prep:
– Determine “communication lanes”. Pass intermediate results directly 

from one cook to another? Or use a big central table in the kitchen to 
stash them?

– Determine when and how to pass around intermediate results 
between cooks

– Determine where to store, perhaps cache, supplies
– …

• Word count:
– Shared memory? Or message passing? Or does the language/library 

we use have other comm/sync primitives?



Parallelization process: mapping

• Specific to system or programming environment
– Parallel system resource allocator
– Queuing systems
– OS scheduler



Summary: goals of the parallelization process

Step Architecture 
dependent?

Major performance goals

Decomposition Mostly no • Expose enough concurrency but not too much
Assignment Mostly no • Balance workload

• Reduce communication volume
Orchestration Yes • Reduce noninherent communication via data 

locality
• Reduce communication and synchronization cost 

as seen by the processor
• Reduce serialization to shared resources
• Schedule tasks to satisfy dependencies early

Mapping Yes • Put related threads on the same core if necessary
• Exploit locality in chip and network topology



Parallel hardware architectures

• Subset of chapter 6 from “Computer Organization and Design”
– Google knows this book, the library probably too

• These slides cannot be published on a publically accessible 
web site. Distribution through other channel (will be 
announced on slack)



Common parallel hardware architectures - overview

• CPUs
– Vector and multimedia instructions
– Hyperthreading
– Multicore

• GPUs
– Plenty cores
– plenty*plenty threads, switching between them super fast
– But: groups of threads run in lockstep (if/then/else possible, but threads 

that don’t enter some branch will be idle)
– Double-But: rabbit hole

• Clusters
– Plenty of computers connected through a network
– Requires programming with message passing (at least on low abstraction 

level)


