UiT

THE ARCTIC
UNIVERSITY
OF NORWAY

Introduction

inf-2202 Concurrent and Data-intensive Program
Fall 2017
Lars Ailo Bongo (larsab@cs.uit.no)



Outline

Why?
What?
How?



Petabytes

Total disk storage at EMBL-EBI

80

70

60 "”,r

50 /
40 /
30

20
10 7,/

0 I I T
2009 2010 2011 2012 2013

Year

Data growth at EMBL-EBI

Source: Charles E. Cook et al. Nucl. Acids Res.
2016;44:D20-D26

2014

Bytes

Bytes

1.E417
166 -
1E415
164 F-T
e80T
etz 77
1E+11
160 F-
g0 o

16408+

Data accumulation by type

== Sequence
- Array

- Mass spec.

1E407 ==
2004 2006

1E+17
1E+16
1E+15
1E+14
1E+13
1E+12

1E+11

2008 2010 2012

Data accumulation by resource

= PRIDE
= EGA



Blazingly fast data access via high-bandwith
memory

GPU Engine Specs:

NVIDIA CUDA" Cores
Training deep learning networks involves moving a /ot of data, and
current memory technologies are simply not up to the task. The Nervana

Engine uses 2 new memory technology called High Bandwidth Memory
that e hath Rhinkh _ ~ana- A B e nrnniHing 32 GB Of On_chip
New high performance computer to researchers in Norway j of memory access

Base Clock (MHz)

Boost Clock [MHz)

Key figures (approx):

* Processor Cores: 30,000.
* Internal Memory: 70 terabytes.
e Internal disk: 150 terabytes.

* Central disk: 2.45 petabytes. ry
» Theoretical Performance (Rpeak): 1.1 petaflop/s.
e Annual theoretical energy capture: 2.5 million KWh. (290 kW x 24 x365)

e Dimensions: 18 cabins (10 meters). 1emory-optimized

le, in-memory
applications and in-memory databases in the AWS cloud. X1 instances
offer 1,952 GiB of DDR4 based memory, 8x the memory offered by any
other Amazon EC2 instance. Each X1 instance is powered by four
Intel® Xeon® E7 8880 v3 (Haswell) processors and offers 128 vCPUSs.



What can we do with all the data and cores?

et i s '

»

Here's the latest on Seattle.




Motivation

* “The core is the logic gate of the 215 century”
Anant Agarwal, MIT

— The number of cores will double every 18" month

Ready or
not, here
they come!

2002 2005 2008 2011 2014

Figure from a lecture by Bruce Shriver, Feb 2012, UiT



The Tail Wagging the Dog

/In 2000, Intel transitioned from )
the Pentium 3 to the Pentium 4.
The transistor count increased

by 50%, but the performance

only increased by 15% )

complexity and the
erformance wall, the
power wall, the thermal
wall and the ever
present memory wall.

exity in a
parallel world:
algorithm
development;
models of
abstraction and
programming
languages; the
compiler technology
wall, the benchmark
wall, and the
simulation wall.

architectures using

/many- core chips; ru
support for a variety of tool
chains; difficulty in reasoning
about parallel programs,
difficulty in testing and
debugging implementations
of parallel programs,
recovering from errors, etc.

Slide from a lecture by Bruce Shriver, Feb 2012, UiT



rore: 3 ~Yodalalelle
P Bt - A N Dt -

(O

A

Multicore, up to a certain number of cores, allows for
traditional approaches to accommodate the required
changes in systems design, implementation, test, etc.

. Most contemporary operating systems
have limited scalability and the tool chains for parallel
program development are woefully inadequate

Slide from a lecture by Bruce Shriver, Feb 2012, UiT



Motivation - summary

* Application pull
— Supercomputing
— Data-intensive computing
— Games

— Robotics

* Technology push

— How to utilize 1000’s of cores?



Teaching staff

e Associate Prof. Lars Ailo Bongo

* Teaching Assistants:
— Einar Holsbg
— Tengel Ekrem Skare

* Guest lectures:
— Lars Tiede (ITA, UiT)
— Dag Brattli (Microsoft)
— Age Kvalnes (Microsoft)
— Steffen Viken Valvag (Microsoft)
— Tor Kreutzer (Microsoft)

— Jan-Ove Karlberg (Microsoft)
— .7



Course content

* 3 main topics:
— Concurrent programming
— Data-intensive computing

— Performance evaluation

e Notincluded:

— In-depth study of systems and approaches
— GPU/ accelerator programming
— Concurrency theory

e No textbook



Information sources and contact info

Web page: http://www.cs.uit.no/kursinfo/inf2202
— Or https://inf-2202-f17.github.io/

Mailing list: inf-2202-f17@list.uit.no

Github organization: https://github.com/inf-2202-f17
Slack team: inf-2202-f17

We will not use Fronter/ whatever



http://www.cs.uit.no/kursinfo/inf2202
https://inf-2202-f17.github.io/
https://github.com/inf-2202-f17
https://inf-2202-f17.slack.com/

TODO list 1:

Make sure you are subscribed to the mailing list
— https://list.uit.no/sympa/info/inf-2202-f17
— Can use non-UiT email

Create github account, send Einar username
Join slack channel or ask Einar or Tengel for invitation

Receive invitation to join github organization



https://list.uit.no/sympa/info/inf-2202-f17
https://github.com/inf-2202-f17

Lecture plan

https://inf-2202-f17.github.io/

Most lectures on Thursdays 14:15-16:00

Fridays 12:15-13:00 may also be used

Colloquium on Tuesdays 14:15-16:00 (A016 or p-lab)



https://uit-inf-2202-f16.github.io/

Mandatory assighments

1. Parallel programming
2. Reactive programming
3. Big data processing on cloud



Exercises

Note! This is a programming course. You need to spend a
significant amount of time designing, implementing, testing,
and evaluating programs.

Note! Concurrent and data-intensive programming is easy if:
— Itis a simple problem
— There is a library for it
— You do not care about performance/ scalability
— You do not care about correctness
— Someone tells you how to do it

But, usually this is not the case



TODO list 2

Read:
— Modern operating systems, 3ed, Andrew S. Tanenbaum. Prentice Hall. 2007.
Chapters: 2.2, 2.3,2.5,10.3,11.4

— Alternative to MOS: another operating systems textbook: the chapters about
threading, IPC mechanisms, and classical IPC problem:s.

a) Compare the overhead of forking a process vs. creating a Pthread
b) Compare the overhead of forking a process vs. creating a Python thread

c) Implement a solution the following classical IPC problems using pthreads/Python
threads and semaphores/condition variables. Note that you also need to
generate a use case, test data, and useful output:

a) Producer/ consumer
b) Reader/ writer
c) Sleeping barber
d) Dining philosophers
d) Modify the code in c) to use message passing.



