
Security and Middleware

Anders Andersen, Gordon Blair∗, Per Harald Myrvang, and Tage Stabell-Kulø
Department of Computer Science

University of Tromsø, Norway
{aa,gordon,perm,tage}@cs.uit.no

Abstract

The security features of current middleware platforms,
like Enterprise Java Beans and CORBA, are either simple
and limited or complex and difficult to use. In both cases
are the provided features static and do not support the flex-
ibility needed in a wide range of applications. This paper
introduces an approach to flexible security mechanisms in
the context of a reflective middleware architecture. The
reflective middleware OOPP is a component and capsule
(container) based platform providing its reflective features
through a set of distinct meta-models. Flexible security
mechanisms are provided using a specialized programming
language called Obol. In OOPP the flexible security mech-
anisms based on Obol is a subset of reflective features of
the middleware platform. Obol and its machinery is a sub-
set of one distinct aspect or meta-model of the middleware
platform.

1. Introduction

Middleware is used to help programmers to create dis-
tributed (and complex) applications [2, 6]. It presents a
set of useful programming abstractions hiding the details
of distributed programming (i.e. providing transparencies).
The consequence is that the middleware providers have
made a lot of decisions on behalf of the programmer about
the behavior of the programming abstractions. This is also
true for the security features. The result is that a given mid-
dleware platform, either provides a simple programming
abstraction for its not-so powerful security features, or it
provides a complex set of programming abstractions for its
powerful security features.

The first approach with simple security programming ab-
stractions is easy to use, but the provided security features
might not be powerful enough for a given application. For
example, an Enterprise Java Beans container [14, 16] can

∗Distributed Multimedia Research Group, Lancaster University, UK.

have access control lists (ACLs) for provided interfaces.
Users listed in an ACL are identified and authenticated by
user names and passwords. Such an approach has some lim-
itations. It is difficult to delegate access rights, either to
users as such or to composite users acting in specific rôles.
In particular, BobasManager and AliceasManager should
be two differentusersand not only Manager. Another lim-
itation is how to integrate such a solution into an existing
security infrastructure (i.e. Kerberos).

The second approach with a complex set of security pro-
gramming abstractions is more complex to use and it in-
troduces some extra overhead. This complexity and over-
head might be present even if the programmer does not use
the most complex security features provided. The CORBA
security reference model presented in [12] is complex to
use and implement correctly. The provided protocols and
mechanisms are a challenge to use understand even by ex-
perienced programmers.

Still, a lot of the decisions about the security features
provided are made by the middleware provider (or the mid-
dleware standard committee).

2. Reflective middleware

Middleware has a similar role in a distributed system
that the operating system has on a computer: to hide
the low level details and present a unified programming
model. Middleware and operating systems also share com-
mon problem related to their usage. The problem was stated
clearly by Per Brinch Hansen [5]:

One of the difficulties of operating systems is the
highly unpredictable nature of the demands made
upon them.

Middleware has to remain responsive to new challenges
and demands from existing and new type of applications.
Some of these new difficulties that are emerging are (i) sup-
port for multimedia, (i) real-time requirements, and (iii) in-
creasingly mobility. These different and unpredictable chal-

� �

�

� �

�

Binding

�

Figure 1. An example with components and two capsules A and B.

lenges are the motivation for reflective middleware archi-
tectures [4]. One key feature to meet these challenges is
adaption. Randy H. Katz summaries the requirement for
adaption with mobility in the following observation [8]:

Mobility requires adaptability. By this we mean
that systems must be location- and situation-
aware, and must take advantage of this informa-
tion to dynamically configure themselves in a dis-
tributed fashion.

It should be possible to configure the underlying support
offered by the middleware platform to satisfy the require-
ments from a wide variety of applications. Example of such
configurations are scheduling policies, special protocols for
multimedia, resource management, and security policies.
Another important requirement is the possibility to inspect
and adapt the support offered at run-time. This can be done
done by adapting an open engineering approach through the
concept of reflection.

Current generation middleware only have limited (if
any) support for configurability and open engineering. Im-
plementation details are hidden and services are available
through a set of interfaces (APIs) to a black box. There are
several good reasons for doing this1 but recent experiences
with these platforms suggest that this is to restrictive to a lot
of application types. OMG has as a result of this recently
added some interfaces to the underlying system i CORBA
[11]. But these approaches provide limited openness to a
limited set of selected components and they are rather ad
hoc.

2.1. OOPP

OOPP (Open-ORB Python Prototype) is a prototype of
the Open-ORB architecture [4, 3] adding features for qual-
ity of service management [1]. The programming model of
OOPP are influenced by the ISO Reference Model for Open
Distributed Processing (RM-ODP) [7]. RM-ODP provides

1The main reason to provide a middleware platform as a black box with
a set of predefined interfaces is to hide the complexity of the underlying
system for the application programmer. For a lot of traditional client-server
based applications is this hiding of complexity (transparency) a good thing.

a rich vocabulary and grammar for describing a distributed
system, including implicit and explicit bindings, different
types of interfaces, composite components, naming service,
and capsules. The capsule is the runtime of OOPP compo-
nents. It manages and provides services to its local com-
ponents. Figure 1 is an example of some components in
the OOPP programming model. The smaller light grey
circles are components and the two large circles are cap-
sules. The small T-shaped attachments to the components
are interfaces. Interfaces are connected with local bindings
(e.g the local binding between an interface of componenta
and an interface of componentb). Componenta has an im-
plicit binding to a name servern and componentb andc are
connected with an explicit binding. This binding is a dis-
tributed (and composite) component. The binding and the
other components are connected with local bindings (two
connected interfaces).

OOPP (and Open-ORB) tries to overcome the limitations
in current middleware platforms by opening up the ORB
implementation. This is done through the concept of reflec-
tion [15]. Access to the implementation is provided through
a distinct set of meta-models [13]. Each meta-model pro-
vides a meta-object protocol (MOP) [9] used to inspect
and manipulated the part of the implementation exposed
through this meta-model. Theencapsulationmeta-model
provides access to the implementation of OOPP compo-
nents and interfaces. It can be used to inspect and ma-
nipulate their implementation including adding new meth-
ods to components and interfaces, installing pre- and post-
functions on methods, and changing the implementation
(class) of components. Thecompositionmeta-model pro-
vides access to the component graph representing a com-
posite component. It can be used to inspect and manipulate
this graph. Theenvironmentmeta-model provides access
to the mechanisms and policy for queing, synchronization,
scheduling, and dispatching messages (method calls). The
resourcemeta-model provides access to the allocation and
management of resources associated with a component or
an interface. Figure 2 illustrates a component and its four
meta-models.

Encapsulation

Composition Environment

Resources

Component

Figure 2. The four meta-models of a component

3. Programmable security

Three observations about security are important: (i) se-
curity is not an add-on feature, (ii) security features are
complex to understand and implement, and (iii) the need
for security differs a lot depending on the environment and
the application. The consequence of observation (i) is that
security has to be taken into consideration from the begin-
ning and in all aspects during the design and the implemen-
tation of a new middleware platform. The consequence of
observation (ii) is that the provided abstractions for security
should be expressive and hide details when possible. The
consequence of observation (iii) is that the security mech-
anisms should be flexible and hidden details might have to
be exposed and manipulated.

These three observation taken together should warrant
for a new approach to security. The very complex but
still very rigid security infrastructure offered by CORBA
[12] demonstrates that the real problem with security in in-
frastructure is not the richness, but rather the lack of pro-
grammability. To that end we believe thatprogrammable
securityis a viable solution.

3.1. Obol

The programming language Obol is designed solely as a
security protocol language. The language enables suppliers
of software components to describe their applications secu-
rity requirements in the form of a program rather than in
the deployment descriptor. To see the significants of this,
consider the case where a third party supplier changes the

1 (believe $P name self)
2 (believe $Q name "...")
3 (believe $K shared-key 0x12345...)
4 (generate $N nonce 128)
5 (send $Q $P $Q $N)
6 (receive $Q $Q $P (decrypt $K $N *1))
7 (send $Q $P $Q *1)
8 (return t)

Figure 3. An Obol program.

protocol he requires his customers to use. To continue to
use the service, the software components must either be re-
implemented with the new protocol, or a container must be
augmented with the new protocol. Both are major undertak-
ings, particularly from a logistic point of view. In Obol the
provider can specify the protocol as part of the certificates
he issues to users (e.g. SSL). Obol is asafelanguage in the
sense that it can be executed without risk of compromising
the container, the performance is good (it can be compiled
to machine code), and since it is geared towards a specific
purpose, it is powerful and programs are short.

Figure 3 is a short example (less than 200 bytes) of a pro-
tocol used to establish the fact that the other party is present
(on line). We will not go into details about how this proto-
col works, the correctness of it, and the server side of the
protocol. The purpose of this example is to give the reader
an idea about what an Obol program is.

Variables are identified by having a ‘$’ prefix. Anony-
mous (type-less) variables have a ‘* ’ prefix and are identi-
fied by a number. A variable of the typename includes an

address (enough information to locate whatever the variable
is referring to). A variable of the typeshared-key is a
shared encryption and decryption key. The first four lines
in the example above creates four variables.$P is given the
local name (self holds system specific information about
the local user and her environment),$Q is given the name
of the other party,$K is a key shared between$P and$Q,
and$N is a 128 bits nonce generated at runtime. In line 5 a
message containing the two names and the generated nonce
is sent to$Q (the first argument ofsend is the receiver).
In the next line a message containing the two names and a
block encrypted with the key$K is received. The encrypted
block should include the nonce$N and an anonymous vari-
ables given the name*1 . In line 7 a message containing the
two names and the received anonymous variable*1 is sent
back to$Q.

Most existing protocol languages focus on verification
of the protocols the languages describe. Obol is a language
tailored for the implementation of network security proto-
cols. The primitives in Obol are geared specifically towards
cryptographic or security protocols. These protocols use
cryptographic machinery to establish certain properties of
messages. These properties can be integrity, secrecy and
origin. Authentication protocols can for example be used
to exchange a session key between two parties, to establish
mutual authentication, to establish the presence of a partic-
ipant, or all three at the same time [10].

Three concepts are important in the design of Obol:
(i) Security protocols are often described in terms of mes-
sage passing. In Obol no interesting assumptions are made
about how send and receive of messages are actually done.
(ii) Security protocols achieve their goals by the beliefs that
are assembled by reception of messages with content that
is expected. Beliefs stem from two sources: assumptions
and new beliefs. Both are made explicit visible in Obol pro-
grams. (iii) Security protocols deal to a large extent with
random material such as keys an nonces. Obol provides
primitives to generate fresh materials and locate keys that
are already known.

4. Obol in OOPP

Obol provides a language to implement (security) pro-
tocols. These protocols (or Obol programs) have to be in-
terpreted or executed in a runtime. This runtime is called
Lobo. In OOPP, Lobo is included in the capsules. The MOP
of the environment meta-model is used to access and install
Obol programs in Lobo. Figure 4 illustrates Lobo in the
environment meta-model of OOPP.

A Obol program installed in Lobo provides an imple-
mentation of a given security protocol. This can be existing
protocols like SSH, SSL or TSL, or it can be special purpose
protocols only used in a limited application domain.

Environment

Component

Lobo

SSL

SSH

TLS

Figure 4. Lobo in OOPP

An example could be a component that needs to access
an external service that has to be accessed in a secure man-
ner. The client side of the security protocol for this service
is installed in Lobo and the application access the service in
the same way it access the interface of other (non-secure)
services. Lobo performs the actual security protocol, and
the security protocol is not exposed at the business logic
level.

Another example involves two OOPP capsules. Two
OOPP components located in different capsules have to in-
teract in a secure manner. ComponentC in capsuleA is a
client accessing the services of componentS in capsuleB.
The client side of the security protocol is installed in Lobo
in capsuleA. The server side of the security protocol in-
stalled in Lobo in capsuleB. Figure 5 illustrates this setup.
The environment meta-models of componentC andS are
exposed to show the communication between the client and
server side of the security protocol.

5. Conclusion

The flexibility provided by the reflective middleware
platform OOPP is a perfect match for programmable secu-
rity of Obol. Reflection provides the mechanisms needed to
access and modify the environment of the software compo-
nents of a given application. In OOPP the runtime of Obol
called Lobo is accessed through the environment meta-
model. The environment meta-model MOP is used to install
and manage Obol program i Lobo. This makes it possible to
change and replace security protocols used without chang-
ing the business logic of the given application, and without

� �
Binding

Security protocol

Capsule � Capsule �

Figure 5. Security protocol between OOPP capsules

changing the implementation of the middleware platform it-
self.

Obol is a high-level language. Writing protocols is such
a high-level language is probably less error-prone than writ-
ing them in a low-level language like Java and C++. It also
makes it possible to upgrade from one version of a protocol
to another without starting a major implementation effort.

Obol implements a set of cryptographic primitives. The
quality of such code must be very high. By providing such
primitives in a high-level language we centralize the code
that implements these primitives. We belive that it should
be possible for a programmer using Obol to apply poten-
tially complex cryptographic protocols to a system without
having to embark on the implementation endeavor neces-
sary to implement every detail of the protocols.

References

[1] A. Andersen. OOPP, A Reflective Middleware Platform
including Quality of Service Management. Dr. sci. thesis,
Department of Computer Science, University of Tromsø,
Tromsø, Norway, Feb. 2002.

[2] P. A. Bernstein. Middleware: A model for distributed system
services. Communications of the ACM, 39(2):86–98, Feb.
1996.

[3] G. S. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke,
F. Costa, H. Duran-Limon, T. Fitzpatrick, L. Johnston,
R. Moreira, N. Parlavantzas, and K. B. Saikoski. The de-
sign and implementation of Open ORB 2.IEEE Distributed
Systems Online, 2(6), 2001.

[4] G. S. Blair, G. Coulson, P. Robin, and M. Papathomas. An
architecture for next generation middleware. InMiddle-
ware’98, Sept. 1998.

[5] P. Brinch Hansen.Operating System Principles. Prentice
Hall Series in Automatic Computation. Prentice Hall, 1973.

[6] W. W. Eckerson. Three-tier client/server architecture.Open
Information Systems, 10(1):3–22, Jan. 1995.

[7] ISO/IEC. Open distributed processing reference model,
part 1: Overview. ITU-T Rec. X.901 | ISO/IEC 10746-1,
ISO/IEC, 1995.

[8] R. H. Katz. Adaptation and mobility in wireless information
systems.IEEE Personal Communications, 1(1):6–17, First
Quarter 1994.

[9] G. Kiczales, J. des Rivières, and D. G. Bobrow.The Art of
the Metaobject Protocol. The MIT Press, 1991.

[10] A. Liebl. Authentication in distributed systems: A bibliog-
raphy. ACM Operating Systems Review, 27(4):31–41, Oct.
1993.

[11] Object Managment Group. The common object request bro-
ker: Architecture and specification. Technical report, Object
Managment Group, Feb. 2001. (revision 2.4.2).

[12] Object Managment Group. Security service specification.
Technical report, Object Managment Group, Mar. 2002.
(version 1.8).

[13] H. Okamura, Y. Ishikawa, and M. Tokoro. AL-1/D: A dis-
tributed programming system with multi-model reflection
framework. InProceedings of the Workshop on New Models
for Software Architecture, Nov. 1992.

[14] B. Roth. An introduction to enterprise JavaBeans technol-
ogy. Technical report, Java Software, Sun Microsystems,
Oct. 1998.

[15] B. C. Smith. Procedural Reflection in Programming Lan-
guages. PhD thesis, Massachusetts Institute of Technology,
1982.

[16] Sun Microsystems. Simplified guide to the Java 2 platform,
enterprise edition. Technical report, Sun Microsystems, Inc.,
1991.

