OOPP

A Reflective Middleware Platform
including
Quality of Service Management

Anders Andersen

February 2, 2002

A dissertation submitted in partial fulfillment
for the degree of Doctor Scientiarum

QQ,RSI]&
N 2
b
o
TROM®

Department of Computer Science
Faculty of Science
University of Tromsg

To Brynjar and Merete

In the memory of my mother Tordis Helene Andersen

This dissertation was typeset with the IATEX macro package for TEX. The figures was drawn
using MetaPost, the bibliography was prepared using BIBIEX, and the author/editor index was
prepared using Authidx. The fonts used are Concrete Roman, Computer Modern Sans and
Euler.

Q dissertation produced with the TgX typesetting system

Abstract

Middleware has emerged in distributed systems to present a unified programming model
to application programmers and mask out the problems of heterogeneity and distribution.
The reason to introduce middleware is to ease the process of creating complex (distributed)
applications. Software developers recently have observed a related change in the software
industry. This change is called software components (or just components) and it has
changed the way software can be developed, deployed and maintained. A component is self-
contained code that can be independently developed and deployed. This ease the process of
building a complex application containing a composition of different components (possible
from different providers) that interacts to provide the functionality of the application.

Present middleware are made available to the application programmer through a (static)
Application Programming Interface (API). Different application domains have different
demands made upon the middleware platform. The results are complex and huge mid-
dleware implementations providing a lot of functionality with few possibilities to change
and adapt its behaviour. Continuous media streams need communication protocols quite
different from traditional remote procedure calls. Some applications might have to ad-
apt to different net characteristics at run-time. Such special needs are rarely supported
in current middleware implementations. The design of the next generation middleware
should adopt an open engineering approach for the support of configuration and adaption.
Reflection provides an principled (as opposed to ad hoc) means of achieving such open
engineering.

The OOPP platform presented in this work is an implementation of an reflective middle-
ware platform with an expressive programming model. It is an investigation into how to
implement such a platform, and an investigation into what programming model it should
provide.

Quality of service management is essential for many application domains. An open en-
gineering approach provides the mechanisms to manipulate (adapt) the middleware for
given quality of service demands. A quality of service management system can use these
mechanisms to perform its management tasks. However, it has to implement the policies
for what to do when based on observation of the behaviour of the system made available
with an open engineering approach.

Describing management policies in a formal language has a lot of advantages. The ob-
vious one is the possibility to formally reason about the consequences of a given policy
applied on a (formally described) system. A formal description can also be interpreted
and executed on a computer. The possibility to actually interpret (and run) a formally
described management policy can in fact be used in a running system. In OOPP, quality
of service management is successfully introduced in the running system based on compon-
ents with their behaviour (management policies) described in the formal language of timed
automata. The actual timed automata descriptions are either generated by tools (for ex-
ample from temporal logic describing the management constraints or from simulation of
the running system) or made manually by programmers specialised in such tasks.

The OOPP platform has been successfully used in several research activities looking into
special enhancements to the platform. It has also been used successfully to build applic-
ations that needs a system that can adapts its behaviour.

April 5, 2002: Page iii and vii updated. Empty pages (page 133 and 134) removed.

Vi

Acknowledgements

I have to thank a lot of people that supported and provided feedback to my work on
this project. However, every error and weakness introduced in this work are my own
responsibility.

Professor Frank Eliassen has been the supervisor of this project. He has played that role
perfectly. He has guided the work and helped high-lightning the important research issues
and results. His contributions were of great importance, especially in the final stage of the
project.

Professor Gordon Blair brought me in to the Open-ORB project at its early stage (before it
was named Open-ORB), and introduced me to the concept of reflection. He has provided
a lot of ideas and has been a great discussion partner (even when he runs). The OOPP
project would never have existed if it was not for his contributions.

The people at NORUT IT, the University of Tromsg, and Lancaster University have
provided the right environment to do this work. At NORUT IT I will especially mention
Henning Sundby, Gudmundur Jokulson, Asgeir Finnseth, Dag Diesen and Arne-Wilhelm
Theodorsen. At the University of Tromsg I want especially to highlight the co-operation
with Tage Stabell-Kulg (providing all the difficult questions starting with “why”), Hans Ole
Rafaelsen and the people of the ODS group. At Lancaster University I have to mention
Michael Papathomas, Geoff Coulson, Lynne Blair, Fabio Moreira Costa, Hector Duran
Limon, Katia B. Saikoski and David Sdnchez Gancedo (the important first user of OOPP).
You all made the Open-ORB project a great home for OOPP. Many more from NORUT IT,
the University of Tromsg, Lancaster University, the University of Oslo and UniK at Kjeller
should also be mentioned. You know who you are. To meet and work with you has been
great.

Friends and family outside the professional life are an important resource. Thank you for
being there. And to my father: Thank you for the support from you and my mother (Til
min far: Takk for at du og mor alltid stgttet meg).

Finally, and most important, Brynjar and Merete. You make me happy and you make me
feel good. You are great. This work is dedicated to you.

April 5, 2002, Anders Andersen

vii

This project was funded by the Norwegian Research Council and NORUT IT through
the ELDORADO project (Project 101048/420). The project has also been supported by a
NATO Science Fellowship (through the Norwegian Research Council, Project 116968/410),
the EPSRC Grant GR/L31609 entitled “A Specification Architecture for the Validation of
Real-time and Stochastic Quality of Service” (trough the Lancaster University), and the
University of Tromsg.

viii

Contents

Abstract v
Acknowledgements vii
Contents xiii
List of figures Xvi
List of tables xvii
List of listings Xix
Abbreviations XXi
I Context 1
1 Introduction 3
1.1 Trendsin middleware o 3
1.1.1 Interfaces and components. 4

1.1.2 Open engineering and reflection 4

1.1.3 Quality of service management 5

1.2 Researchissues e 5
1.2.1 Implement a reflective middleware platform 5

1.2.2 Introduce QoS management functions 6

1.3 Methodology e 6

1.3.1 Elaboration 6
1.3.2 Delimitation 7
1.3.3 A comment on the selected approach 7
14 Results. L e e e 8
1.41 Software e 8
1.42 Publicationso 9
1.5 The rest of this document 0oL 12
151 Part,Context 12
15.2 Part II, OOPP 13
1.56.3 Part III, Discussion 13
1.5.4 Part IV, Appendix 13
16 Conventions L e 13
Overview 15
2.1 Middleware e e e 15
2.1.1 Existing middleware platforms 16
2.1.2 ISORM-ODP e 17
2.2 Reflection s 18
2.2.1 Models of reflection Lo 19
2.2.2 Reflective languages and systems 19
2.2.3 Reflective middleware 20
2.3 Quality of service management Lo 21
2.3.1 Quality of Service L oL 21
2.3.2 Management oL 22
Open-ORB 25
3.1 Reflective middleware Lo 25
3.2 General principles Lo e 26
3.2.1 Procedural reflectiono 26
3.2.2 Object-oriented 27
3.2.3 Per object meta-spaces. 27

3.2.4 Multi model approacho 27

3.25 Other principles e 28

3.3 Programming model Lo L 28
3.3.1 Interfaces and local bindings 29
3.3.2 Components 29
3.33 Capsules. oL 30

3.4 Reflection through meta-models, 31
3.4.1 Encapsulation meta-model 31
3.4.2 Composition meta-modelo oL 32
3.4.3 Environment meta-model oo 32
3.4.4 Resource meta-modelo oL 33

Il Essence 35
4 OOPP design issues 37
41 RM-ODP 37
4.2 The programming modelo oL 38
421 Objectsandclasses. e 38
4.2.2 Interfaces and local bindings, 38
4.2.3 Components and composite components 41
424 Bindings. 42

4.3 The infrastructureo L 44
431 Capsule e e e e 44
432 NamesSeIrvert v v v it it e e e e e 46
4.3.3 Nodemanager i i 47
434 Factories 47

44 Meta-models e 48
441 Encapsulation meta-model L. 48
442 Composition meta-model 51

Xi

5 OOPP implementation 55

5.1 The programming structures 56
5.1.1 Interfaces and local bindings 56
5.1.2 Components and composite components 59
5.1.3 Bindings. e 62

5.2 The infrastructure oL L L 66
521 Capsule e e e 66
522 Nameserver.t e e e e 69
5.2.3 Nodemanager 71
524 Factories L L 71
525 Audiostreamexampleo oL 72

5.3 Meta-objects L 73
5.3.1 Encapsulation meta-objects 73
5.3.2 Composition meta-object L. 79
5.3.3 Audio stream example continued 80

6 Quality of service management 85

6.1 Management roles L 85
6.1.1 Monitor 85
6.1.2 Strategy selector L Lo 87
6.1.3 Strategy activator oL 87

6.2 Management objects oL Lo L 88
6.2.1 Automata 88
6.2.2 Other management objects 90

6.3 Performing the management functions 90
6.3.1 Monitoring with automata. 0oL 90
6.3.2 Strategy selecting with automataol 91
6.3.3 Strategy activating Lo oLl 91
6.3.4 Meta-managementol 91

6.4 QoS management in OOPP 92
6.4.1 OOPPautomata 0. 92
6.4.2 OOPP automata components 96
6.4.3 Audio stream example continued 96

xii

7

Discussion

Evaluation

7.1 Flexibility and performance

7.1.1 Local bindings and components
7.1.2 Meta-objects
7.2 Examples e e
72,1 ExampleI s
722 Example II s
7.2.3 Otherexamples e

7.3 Comments e

Conclusion

8.1 Summaryo e e e e
8.2 Major contributions oL oL oL
83 Futurework L

8.4 Concluding remarks

IV Appendix

A

B

Author and editor index

Bibliography

Compendium

C.1 Proceedings PROMS 2000o
C.2 IEE Proceedings — Software 147(1)

xiii

101

103
103
103
104
105
105
108
110
111

113
113
114
115
116

117

119

123

Xiv

List of figures

3.1 Components and their infrastructure 28
3.2 An AV-stream as a composite componento 30
3.3 An object and its four meta-modelso 31
3.4 'The resource framework 33
4.1 Two interfaces bound with a local binding 40
4.2 A composite componento 41
43 Abinding e e e 42
4.4 Different kindsof bindings o oo oL 43
4.5 Different locations to add pre-, post- and wrap-methods 50
5.1 Implementation of a local binding 58
5.2 Two components connected with a local binding 60
5.3 Composite componento oL 61
5.4 Composite component implementation details 62
5.5 Implementation of binding object 63
5.6 An audio source and sink connected with a stream binding 72
5.7 An object and its encapsulation meta-objecto 76
5.8 Stream binding with or without a filter component 81
5.9 An audio source and an audio sink bound with a stream binding 82
5.10 Introducing a buffer component in the stream binding 83
6.1 The different roles of management objects in a producer-consumer example 86
6.2 The monitor automaton in the producer-consumer example 89

XV

6.3
6.4
6.5
6.6

7.1
7.2
7.3

The strategy selector automaton in the producer-consumer example 92

Audio stream management setupo 97
The monitor in the audio stream example 97
The strategy selector automaton in the audio stream example 98
Example I client and servers, 106
Strategy selector from Example I Lo 107
Example ITsetup 109

XVi

List of tables

2.1

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

6.1
6.2

7.1

Examples of QoS characteristics 22
Description of arguments and return values in signatures. 56
Services available from the Ibind module 59
Services available from the component and composite modules 63
Services available from the different binding modules 65
Services available from the capsule module 66
Services provided from capsules and capsule proxies 67
Services available from the nameserver module 69
Services available from the nodemngr module 71
Encapsulation meta-object services for objects 74
Encapsulation meta-object services for interfaces 7
Encapsulation meta-object services for components 78
Services provided by the comps module 80
Services available from the automata module. 92
Services available from the amcomp module 95
Extra cost introduced by the meta-object of an object 105

Xvii

XViii

List of listings

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
6.1
6.2
6.3
7.1

Create interfaces and local bindings 57
The creation of stream and signal interfaces 58
Create components and a local binding 60
Create composite component oL 61
Creating and using an operational binding 64
Creating and using signal and stream bindings 65
Examples on the usage of capsule services 68
Using a name SEIVET v vt i v e i e e e e e e e e e e 70
Use a factory to create a composite component 71
Create an audio sourceo 73
Create an audio sink Lo L oL 73
Manipulate methods of anobjecto oo 74
Adding methods to objects and interfaces 76
Adding post-methods 78
Replace object and interfaces of a component 79
Insert component in the component grapho 81
Add a buffer to a stream bindingo oL L 82
FC2 definition of a momitor oL 93
Create, connect and start a monitor and a strategy selector 95
Implementation of the audio stream management setup 99
Strategy activator Example Io oo 108

Xix

XX

Abbreviations

APl Application Programming Interface

COM Component Object Model

CORBA Common Object Request Broker Architecture
DCE Distributed Computing Environment

DCOM Distributed Component Object Model
EJB Enterprise JavaBeans

GIOP General Inter-ORB Protocol

IDL Interface Definition Language

IIOP Internet Inter-ORB Protocol

ISO International Organisation for Standardisation
MOP Meta Object Protocol

MPEG Moving Picture Experts Group

ODP Open Distributed Processing

OMG Object Management Group

OOPP Open-ORB Python Prototype

ORB Object Request Broker

XXi

OSF Open Software Foundation

PDA Personal Digital Assistant

QoS Quality of Service

RMI Remote Method Invocation

RM-ODP The Reference Model for Open Distributed Processing
RPC Remote Procedure Call

TINA Telecommunication Information Networking Architecture

URL Uniform Resource Locators

XXii

Part |

Context

Chapter 1

Introduction

Middleware has emerged in distributed systems to present a unified programming model
to application programmers and mask out the problems of heterogeneity and distribution.
The ‘middle’ part of middleware has two possible explanations. One is that the middle-
ware is a layer between the application and the underlying operating system and network
protocols. The other is related to client-server oriented applications where the middle-
ware is located between the clients and their servers. However, the reason to introduce
middleware is to ease the process of creating complex (distributed) applications.

Software developers recently have observed a related change in the software industry [80].
This change is called software components (or just components) and it has changed the
way software can be developed, deployed and maintained. A component is self-contained
code that can be independently developed and deployed. This ease the process of building
a complex application containing a composition of different components (possible from
different providers) that interacts to provide the functionality of the application.

Current middleware and component technology have none or little support for multimedia
and mobility. In some cases, a set of extensions providing a limited support are provided.
However, none treats multimedia and mobility as a fundamental concept of their infra-
structure.

1.1 Trends in middleware

The term middleware appeared in the literature following the trends of client-server ar-
chitectures. Current middleware has been influenced by the early work on RPC [18] and
the DCE framework from OSF [65]. More recently, RM-ODP [60], CORBA [88], Java
RMI [83], DCOM/.NET [84, 104] and other [105, 36] have influenced the design and im-
plementation of middleware platforms. The following gives a short introduction to some
of the recent trends that have influenced this project.

4 Introduction

1.1.1 Interfaces and components

A common trend in distributed system technology is to adopt an approach based on
interfaces. Interfaces describes a set of services provided (or requested), usually in a lan-
guage and platform independent way. CORBA and RM-ODP are examples of distributed
platforms that have adopted this approach.

Software components are a similar approach to create or wrap self-contained code that can
be developed and deployed independently. All interactions between components happen
through a set of well defined interfaces. Microsoft’s COM technology and SUN’s Java-
Beans are examples of such component models. A component is by Szyperski [103] viewed
“as a unit of composition with contractually specified interfaces and explicit context de-
pendencies only”. Components are now an established technique used in the construction
of complex applications. According to Szyperski, “a component can be deployed inde-
pendently and is subject to third-party composition”. This matches the needs for the
construction of distributed applications perfectly. CORBA components, Enterprise Java-
Beans (EJB) and DCOM are examples of such distributed component models.

1.1.2 Open engineering and reflection

Present middleware are made available to the application programmer through a (static)
API (Application Programming Interface). Different application domains have different
demands made upon the middleware platform. The results are complex and huge mid-
dleware implementations providing a lot of functionality with few possibilities to change
and adapt its behaviour. Continuous media streams need communication protocols quite
different from traditional remote procedure calls. Some applications might have to adapt
to different net characteristics at run-time. Such special needs are rarely supported in
current middleware implementations.

The emerge of applications that need support for continuous media, mobility, quality of
service management and so on, has pushed the middleware community to look in to more
adaptive middleware solutions. The traditional black-box philosophy where the applica-
tion programmer has no possibility to change (or specify) the underlying behaviour of the
middleware is too limited for many application domains. Omne-size-fits-all is not good
enough. Some applications either need a specific solution for its specific characteristics or
a configurable and adaptive solution that fits a wider range of applications.

Configuration and adaptive features have been introduced in some of the current mid-
dleware implementations. The problem with these solutions are that they only provide
limited possibilities to configure and adapt the behaviour of the middleware platform. The
design of the next generation middleware should adopt an open engineering approach for
the support of configuration and adaption. Reflection provides an principled (as opposed
to ad hoc) means of achieving such open engineering.

Reflection initially emerged in the programming language community as an important
technique to introduce more flexibility and openness into the design of programming lan-

1.2 Research issues 5

guages. Later, reflection has been adopted in several other types of systems. Graphical
user interfaces and operating systems are examples of systems where reflection has been
adopted with success. Recently, reflection has been introduced in several middleware
projects.

1.1.3 Quality of service management

Quality of service management is essential for many application domains. An example is
a continuous media stream where the quality of the connection between the stream source
and stream sink needs to be managed. This may involve functions like buffer management
policies, media quality, and resource allocations.

An open engineering approach provides the mechanisms to manipulate (adapt) the mid-
dleware for given quality of service demands. A quality of service management system
can use these mechanisms to perform its management tasks, but it has to implement the
policies for what to do when based on observation of the behaviour of the system made
available with the open engineering approach.

Management policies are often described in a formal language [24]. This has a lot of
advantages. The obvious one is the possibility to formally reason about the consequences
of a given policy applied on a (formally described) system. A formal description can also
be interpreted and executed on a computer simulating the behaviour of the system with
the given management policy. The possibility to actually interpret (and run) a formally
described management policy could also be used in an actual running system.

1.2 Research issues

The first goal of this project is to investigate how to implement an expressive reflective
middleware platform and what reflective features it should provide. An important issue is
the expressiveness and ease of use of the provided programming model. The second goal is
to investigate how quality of service management functions based on formal descriptions
could be applied to this platform. The list of research issues in this project follows below.

1.2.1 Implement a reflective middleware platform

Section 1.1.2 contains some motivation for a reflective middleware platform. Is it possible
to implement a middleware platform that fulfils the demands behind the given motivation?
How is such a middleware platform implemented? What are the reflective features needed
to fulfil the demands? Will the implementation be efficient enough for a wide range
of applications? And finally, is the resulting programming environment expressive and
easy-to-use from the perspective of the programmer?

6 Introduction

1.2.2 Introduce QoS management functions

Section 1.1.3 contains some motivation for quality of service management functions based
on formal descriptions and open engineering. Is it possible to implement expressive man-
agement functions in the experimental reflective middleware platform based on formal
descriptions of the management policies and to use the reflective features to perform the
management tasks? And if so, is this approach flexible enough for a wide range of applic-
ation domains?

1.3 Methodology

The work described in this document is the design and implementation of a middleware
platform based on the new ideas and trends described above. This work is divided in two
main parts: (i) the design and implementation of an experimental reflective middleware
platform, and (ii) the introduction of dynamic quality of service management in this
platform. The purpose of this project is to investigate the research issues from Section
1.2. The selected approach can be summarised in the following sentence:

Design and implement an experimental component-based reflective mid-
dleware platform and introduce dynamic quality of service management
in this environment based on formal specification techniques.

The designed and implemented middleware platform presented is given the name the
Open-ORB Python Prototype (OOPP). This work is a contribution to the Open-ORB
project at Lancaster University.

1.3.1 Elaboration

The middleware platform should provide an environment for distributed components.
This includes managed address spaces for the components to exist in, and mechanisms to
easily interact with local and remote components. It should also provide other necessary
features of middleware platforms. This includes naming, a way to locate and get access to
(remote) components, and mechanisms to create and deploy (and destroy) components.

Support for continuous media is also an important issue. This should be reflected in the
provided programming model and in the underlying infrastructure. Continuous media
needs quality of service management functions and support for media synchronisation.
The quality of service provided will focus on dynamic quality of service management.
Dynamic quality of service management is concerned with the run-time monitoring and
control of services.

Quality of service management will be based on existing tools and specification techniques
already in use in the Open-ORB and V-QoS projects at Lancaster University.

1.3 Methodology 7

Reflection should be applied to all components. This includes application components
and components that is a part of the implementation of the middleware platform itself.

1.3.2 Delimitation

The middleware platform presented in this work should not be regarded as a complete
middleware platform ready to use in the software industry. Its purpose is to demonstrate
some key features of a reflective middleware platform, to show how dynamic quality of
service management can be introduced in such an environment, and to be a tool for further
research on reflective middleware.

Static quality of service management is not given a high priority in this work. Static
quality of service management is concerned with the establishment of the services. This
includes quality of services specification, quality of services negotiation, admission control
and resource reservation.

Performance and scaling will not be a major concern in this work. Performance is of course
an important issue in a middleware platform where the demands from continuous media
are used in the arguments for some of its key features. However, this work will focus on
the characteristics of these features, how to introduce them in the middleware platform,
and how to use them in dynamic quality of service management.

Security is completely ignored in the current version of OOPP. The consequences is that
everybody with the appropriate knowledge can do whatever they want to do to every
component of the applications and the middleware platform itself (even remotely).

Another important issue in middleware and component technology is standardisation. The
idea is that if a middleware platform or a set of components are implemented in accordance
to a given standard they could be used together with other products based on the same
standard. For instance, two different implementations of the OMG CORBA platform
should be able to interact through the standardised IIOP (Internet Inter-ORB Protocol)
[89, 98]. The middleware platform presented here are not implemented according to any
such standards.

1.3.3 A comment on the selected approach

This work has focused on how to implement (construct) a middleware platform with the
characteristics and features described above. It has been done by early prototyping in a
prototyping friendly language. Several prototypes have been implementing, each testing a
limited set of features and ideas. The experience from these prototypes and related work
are then, together with new ideas, used to implement the next generation prototype. Each
new generation has been a step towards a more complete middleware platform. The final
prototype described in this document is a collection of lessons learned through the process
of prototyping, and development of new ideas.

8 Introduction

This prototyping process can be described as the acquisition of knowledge needed to solve
the given problem. Phillip G. Armour argues that software (the prototype) is a medium
for the storage of knowledge [13] and that the product of the efforts to produce software
is the knowledge contained in the software. It is easy to produce simple software and
software similar to what we have produced before since it contains little new knowledge.
The difficult part is to acquire knowledge used to solve new problems. The consequence is
that software development is not a product-producing activity. It is a knowledge-acquiring
activity. In [14] Phillip G. Armour adds:

“... prototyping acknowledges that our job s not to build a system, but to
acquire knowledge.”

1.4 Results

The implementation of a reflective middleware platform has been demonstrated in a pro-
totype of such a platform [10, 9]. The prototype has proven to fulfil the demands of
applications needing support for adaptive behaviour from the platform itself. This doc-
ument and other publications produced in this project discuss how to implement such a
platform. Experiences with the reflective features provided by the prototype have shown
the usefulness of these features and highlighted the most important such features. Exper-
iences in related projects and activities using the prototype have shown that the resulting
programming environment is usable and expressive from the perspective of the program-
mer.

Quality of service management functions based on automata have been successfully in-
troduced and integrated in the platform [21]. This has shown that quality of service
management based on formal descriptions can be implemented in such a platform. It has
also shown that the combination of automata based management activities and the reflect-
ive features of the platform itself can provide a flexible and expressive management system.
These dynamic management functions have proven to be usable and flexible enough for
several cases with different dynamic non-functional behaviour.

1.4.1 Software

The reflective middleware platform prototype (OOPP) presented in the following text
has been successfully implemented in Python [76]. It provides an expressive RM-ODP
inspired programming model with different types of interfaces and bindings for signals,
continuous media and standard method calls. The resulting programming model hides
the complexity of distribution and underlying network protocols. It also provides some
degrees of location and access transparency. A simple but easy-to-use naming service is
also available.

Bindings between two remotely interfaces can be implicit or explicit. Implicit bindings are
introduced without the knowledge of the programmer and hides the complexity of remote

1.4 Results 9

interaction. Explicit bindings makes it possible for the programmer to control the creation
and configuration of a binding. The result is great flexibility where the programmer can
control and configure the binding to the explicit needs of the given application.

Structural reflection is concerned with the contents of a component. Structural reflection
is introduced in OOPP through the encapsulation and composition meta-models. These
meta-models are successfully introduced in the platform. Under some circumstances will
the introduction of meta-models result in side-effects like increased latency and decreased
speed. The encapsulation meta-object of a given object can be used to inspect and manip-
ulate the methods and attributes of this object. The encapsulation meta-object protocol
provides a rich set of services for this kind of inspection and manipulation. The com-
position meta-object of a composite component can be used to inspect and manipulate
the object-graph of this composite component. The composition meta-object protocol
provides different types of services needed to inspect and manipulate the object-graph.

Finally, an automata based quality of services management mechanism has successfully
been added to OOPP. These management components interact using signals. The under-
lying application and middleware platform are monitored and manipulated through their
different meta-models. The behaviour of the management components can be described
with a formal automata syntax. These management components behave according to their
automata description. The automata description can be generated using different kinds
of tools developed in related projects at Lancaster University.

OOPP is proven to work with somewhat complex examples. Typical examples includes
synchronisation and management of audio streams, simple conference applications and
continuous media streams adapting to the underlying network bandwidth.

1.4.2 Publications
Key publications

The OOPP platform itself is presented in «A Reflective Component-Based Middleware
with Quality of Service Management» [10] (reprinted in Section C.1). OOPP is presented
as reflective middleware platform with the possibility to inspect, adapt and extend the
components of the system to satisfy the requirements of a given application. The paper
also introduce quality of service management and how it is achieved using management
components with different roles (monitors, strategy selectors and strategy activators).
Timed automata is presented as one way of specifying the behaviour of such management
components.

In «Supporting Dynamic QoS Management Functions in a Reflective Middleware Plat-
form» [21] (reprinted in Section C.2) the role of reflection in supporting the dynamic QoS
management functions of monitoring and adaptation is considered. It is argued that reflec-
tion provides strong support for such functions and, indeed, the approach offers important
benefits over alternative implementation strategies.

10 Introduction

Other publications

Below follows a short description of work presented in other publications during this
project. Work presented in recent publications are presented first.

In «Arctic Beans: Configurable and Reconfigurable Enterprise Component Architectures»
[11] and «Arctic Beans: Flexible and Open Enterprise Component Architectures» [12]
the Arctic Beans project is described. It is becoming increasingly apparent that existing
middleware technologies are unable to accommodate the great diversity of application de-
mands in modern distributed systems. This problem is particularly evident in emerging
enterprise (or server-side) component architectures (such as Enterprise JavaBeans or the
CORBA Component Model). Such architectures provide implicit support for distribution
through the concept of a container. The main problem with this approach is that dis-
tribution management tends to be hidden from the developer. The Arctic Beans project
is exposing distribution management, with the overall aim of developing a more open
and flexible enterprise component architecture with intrinsic support for configuration,
re-configuration and evolution.

«Flexible authentication and delegation for distributed components» [85] shows how mod-
ern security concepts can be configured and applied to a reflective middelware platform.
Recent development in middleware has focused on a flexible and adaptable platform for
application development and deployment, where reflection is one approach. Adding secur-
ity will force constraints on any flexible and adaptable system, and will often be sacrificed
if it seems like it will hamper use and deployment of the system. Instead of sacrificing the
one for the other, we show how modern security concepts can be configured and applied to
a reflective middelware platform, in such a way that the security platform is as flexible and
dynamic as possible. This includes the ability to dynamically change both the security
policy and policy specification at runtime, based on the interactions between middelware
components.

In the «Formal Support for Dynamic QoS Management in the Development of Open
Component-based Distributed Systems» paper [23] an aspect-oriented specification tech-
nique that supports the specification of component-based distributed systems is presented.
Importantly, this technique also supports the synthesis of quality of service management
components from particular aspects of the specification. We describe how, by using a
tool to support our aspect-oriented environment, we can first specify and verify QoS man-
agement subsystems and then synthesise components that can be placed into a running
system.

«The Design and Implementation of Open ORB 2» [27] discusses the design of the Open
ORB 2 middleware platform, a next generation middleware platform that (i) is more
configurable, (ii) is dynamically reconfigurable, and (iii) supports the longer term evolution
of the design of the platform. These requirements are addressed through an approach based
on reflection together with the use of component technology. Important issues addressed in
the paper include the use of architectural constraints to maintain the integrity of reflective
middleware platforms, together with studies of efficient implementation of such technology.

1.4 Results 11

An overview of the overall OOPP architecture and programming model is presented in
«OOPP: A Reflective Component-Based Middleware» [9]. OOPP is designed from the
beginning with flexibility and adaptability in mind. This can be done by adopting an
open engineering approach for the design of the middleware platform. OOPP implements
a flexible and adaptable middleware based on the principle of reflection.

In «A Formal View of Aspects in the Development of Component-Based Distributed Sys-
tems» [22] an aspect-oriented specification technique that supports the specification of
component-based distributed systems is presented. Importantly, this technique also sup-
ports the synthesis of quality of service management components from particular aspects
of the specification. The paper contains a description of how to first specify and verify
QoS management subsystems and then synthesise components that can be placed into a
running system by using a tool to support our aspect-oriented environment. Focus is on
dynamic QoS management functions, particularly on QoS monitoring and adaptation.

«A Principled Approach to Supporting Adaptation in Distributed Mobile Environments»
[26] presents a principled approach to supporting adaptation through the use of reflection.
More specifically, the paper introduces a language-independent reflective architecture fea-
turing a per-object meta-space, the use of meta-models to structure meta-space, and a
consistent use of object graphs to represent composite components.

The short paper «A reflective component-based middleware in Python» [8] presents the
flexible and open Open-ORB Python Prototype (OOPP) with a focus on the challenges and
demands from existing and new type of applications. This includes support for multimedia,
real-time requirements, and increasingly mobility. The paper also has a focus on the
consequences of selecting Python for the prototype implementation.

«Next Generation Middleware: Requirements, Architecture, and Prototypes» [46] pro-
poses a next generation middleware architecture: an open engineering middleware plat-
form that is run time configurable and allows inspection and adaptation of the underlying
components. This architecture is based on the principle of reflection. The paper also
reports on some existing research prototypes with a focus towards their suitability as next
generation middleware.

The Application Programming Interface (API) of OOPP is presented in the technical
report «The Open-ORB Python Prototype API» [7] from NORUT IT.

«The Role of Reflection in Supporting Dynamic QoS Management Functions» [20] builds
on previous work on reflective middleware platforms. The paper considers the role of
reflection in supporting the dynamic QoS management functions of monitoring and adap-
tion. It is argued that reflection provides strong support for such functions and, indeed,
the approach offers important benefits over alternative implementation strategies.

In «A Multi-Paradigm Specification Technique Supporting the Synthesis of QoS Man-
agement Components» [31], a multi-paradigm specification technique that supports the
synthesis of quality of service management components is presented. A description on the
usage of a tool that supports the multi-paradigm environment is included. The tool is

12 Introduction

first used to specify and verify QoS management subsystems and then used to synthesise
components that can be placed into a running system.

«Separating Functional Behaviour and Performance Constraints: Aspect-Oriented Spe-
cification» [30] addresses the relationship between functional (qualitative) behaviour and
the more quantitative nature of performance constraints. An approach based on aspect-
oriented specification which exploits the diversity and power of existing formal specific-
ation languages is proposed. The approach is illustrated by specifying an example of an
adaptive algorithm. The chosen example is characteristic of QoS management functions
in the field of distributed multimedia systems.

«A Note on Reflection in Python 1.5» [6] is a report on reflection in Python 1.5. The report
describes the open implementation in Python 1.5 and show how it can be used to achieve
a reflective programming model. The report includes a description of an implementation
of a reflection module for Python 1.5.

In the related ATOM project Python was used to prototype and experiment with the use
of a novel concurrent object-oriented programming model called ATOM. In «Concurrent
Object-Oriented Programming in Python with ATOM» [91] the model’s main features
was presented and their use for concurrent programming in Python were illustrated.

1.5 The rest of this document

The rest of this document is organised in four different parts: Part I (including this
chapter) gives an overview of the context of this work. Part II presents the Open-ORB
Python Prototype (OOPP) and how quality of service management is introduced in this
platform. Part III contains evaluation and conclusion of the work presented earlier. Fi-
nally, part IV (the appendix) contains the listing of all authors/editors and publications
referred to in this document, and a re-print of selected publications.

1.56.1 Part I, Context

This chapter gave an introduction to the work described in this thesis. In presented some
major trends in middleware and listed the research issues of this project. A discussion of
the methodology and the main results of this work have been presented. The chapter ends
with this presentation of the contents of the thesis and the graphical and typographical
conventions used in the thesis.

Chapter 2 gives an overview of the topics and related work covered by this project. First
a presentation of middleware related topics and projects are presented. Then reflection
and the usage of reflection are presented. Finally, topics related to quality of service
management are presented.

Chapter 3 introduces the Open-ORB middleware platform from Lancaster University. The
chapter starts with an introduction to reflective middleware and related work on reflective

1.6 Conventions 13

middleware. Then a presentation of the general principles and the programming model of
Open-ORB is given. Finally the reflective features of Open-ORB is presented.

1.5.2 Part Il, OOPP

Chapter 4 discusses design issues for the implementation of OOPP. First the relation
between OOPP and RM-ODP is discussed. Then a discussion of the OOPP programming
model and its infrastructure is presented. Finally a presentation of reflection and its
meta-models in OOPP is given.

Chapter 5 describes the experimental implementation of OOPP. The structure of this
chapter is similar to the structure of the previous chapter. It contains a description and
discussion of the implementation of programming structures, the infrastructure and the
meta-models of OOPP. The programming structures represents the core programming
model of OOPP.

Chapter 6 shows how quality of service management is introduced in OOPP. First a
presentation of the different management roles is given. Then the different managements
objects or components are presented. Finally the actual management functions, including
the management of management functions (meta management), are presented.

1.5.3 Part Ill, Discussion
Chapter 7 evaluates the work presented earlier. First some performance issues related to

the provided flexibility is discussed. Then, the use of OOPP is illustrated through several
examples. The chapter ends with some comments on the presented OOPP platform.

Chapter 8 concludes this work. First a summary is presented. Then a list of the major
contributions and the future work is discussed. Finally the concluding remarks are given.

1.5.4 Part IV, Appendix
Appendix A is an index of all the authors and editors from publications referred to in this

document. Appendix B is a listing of all the publications referred to in this document.
Selected publications are re-printed in Appendix C.

1.6 Conventions

Example names Names in examples are printed in the euler font (like ‘a’ and ‘b’).
Code Source code are printed in the Computer Modern Sans font (like ‘play’).

Interfaces Interfaces are drawn with the symbol ‘L’ (rotated in any directions).

14 Introduction

Local bindings Local bindings are drawn with two connecting interfaces (‘{}-’).
System components System components are usually drawn in dark grey (‘@’ or ‘@’).
User components User components are usually drawn in light grey (‘O’ or ‘O’).
Other objects Some low-level objects are drawn in white (‘O’).

Binding object Binding objects are ‘long’ objects with two (or more) interfaces (‘).
Implicit binding An implicit binding is (usually) drawn with the symbol ‘+—'.
Operational binding Operational bindings can be marked with the symbol ‘.
Signal binding Signal bindings are marked with the symbol ‘~’.

Stream binding Stream bindings are marked with the symbol ‘~’.

Attribute An attribute in an object is drawn with the symbol ‘e’.

Method A method in an object is drawn with the symbol ‘=’

Loop A repeating (looping) activity is drawn with the symbol ‘.

Timed loop A timed repeating activity is drawn with the symbol ‘&’.

Queue A queue (typically a message queue) is drawn with the symbol ‘0T’

Manager A manager is drawn with the symbol ‘e=’.

Abstract Resource An abstract resource is drawn with the symbol ‘©".

Meta-models The four meta-models of an object are usually drawn like this:

0
HCH
O;Q

Encapsulation Composition Environment Resources

Chapter 2

Overview

This chapter gives an overview of and introduction to the different topics this project
covers. It includes middleware, reflection, and quality of service management. Related
work is also presented in this overview.

2.1 Middleware

Early programming models for distributed systems had a goal of hiding the lower level
of the involved communication. Remote Procedure Call (RPC) [18] provides access to
remote functionality (procedures) in a programming model similar to how local function-
ality (procedures) are accessed. The actual communication involving marshaling (packing
the request and its data), data transfer (packed data on the wire) and unmarshaling (un-
packing the request and its data) are hidden for the programmer. RPC only focuses on
communication. Other system level functionality used by programmers are accessed dir-
ectly using the services provided by the hosting system (operating system) of the program.

Middleware aims to provide a standard programming model covering all system func-
tionality. The access to this functionality are provided on a higher level of abstractions.
These abstractions should provide a programming model independent of the hosting sys-
tem. Middleware supports the developers of distributed applications [68]. It provides a
unified programming model and masks out problems related to distribution and hetero-
geneity. The services provided by the middleware is a standard programming environment
and standard protocols [45, 16].

In middleware platforms like CORBA, DCOM/.NET, and Java RMI, the programs use
the concept of interfaces (of objects) to describe and publish its services. Such interfaces
are represented by the signature of its methods. A signature describes the arguments and
return values of a given method. Services provided through an interface can be located
using a naming service. Based on a name or an identifier such naming service returns

15

16 Overview

the necessary information needed to connect to and use the provided services. How the
data (arguments and return values) are transfered between the objects that interacts is
hidden for the application programmer. The methods of remote services can be called in
a similar way that the methods of local objects.

2.1.1 Existing middleware platforms

OMG Common Object Request Broker Architecture (CORBA) was the first middleware
platform to gain widespread acceptance [88]. CORBA supports different hosting platforms
and different programming languages. All major platforms and languages are supported,
and interoperability between different CORBA implementations is a major concern (based
on GIOP, and especially IIOP).

Initially CORBA adopted a black-box philosophy with a static programming model, and
no guidelines or specifications regarding the implementation issues and access to lower level
behavioural details. Recent CORBA specifications (and implementations) include some
possibility for customisation and a more open implementation [89]. The Dynamic Invoc-
ation Interface (DII) allows a client to directly access the underlying request mechanisms
provided by CORBA. Applications use the DII to dynamically issue requests to objects
without using the static stubs generated from interface specifications in the Interface De-
scription Language (IDL). DII also supports other types of invocations like non-blocking
deferred synchronous method calls (separate send and receive calls) and one-way calls
(send-only calls). The Portable Interceptors make it possible to add extra services to
the core behaviour of CORBA. More precisely, interceptors can be added as pre- or post-
processing activities performed on invocations and replies. Interceptors can also be related
to the process of creating objects (to customise this process). Policy objects are another
CORBA feature that can be used to control the behaviour of some internal CORBA ser-
vices. Policy objects can be installed once. Since they can not be overridden they do not
provide mechanisms for dynamic behavioural changes.

The Java platform is tied to the Java language but is available for all major host platforms.
The Java Remote Method Invocation (RMI) protocol is an object-oriented protocol for
performing remote method calls. Access to remote methods are made available through
remote interfaces. Recent Java RMI implementations also makes it possible to cross the
language barriers. Java RMI using CORBA IIOP as its transport mechanisms has made
it possible to call methods available in CORBA interfaces (implemented in any language
supported by CORBA) using Java RMI, and vice versa. Java application servers hosting
Enterprise JavaBeans (EJB) components also use Java RMI as its communication mechan-
ism. The added services provided include complete life-cycle management of components,
transactional component behaviour, and security features (access control). Behavioural
issues including life-cycle management, transactional behaviour and access control can be
specified in the deployment descriptor of EJB components. When a component is deployed
these behavioural features of the component can not be changed.

Microsoft provides its own component model COM [110]. This is a language independent

2.1 Middleware 17

component model providing language independent interactions between components im-
plemented in different languages. COM is closely tided to the Microsoft platforms. To add
support for distributed applications an extension to this model named DCOM [84] has
been made available. COM+ [69] introduced more advanced features in this model. These
features include transaction support and security mechanisms. The most important new
feature promoting openness to the model itself is COM+ interceptors. They can be used
to change a limited set of aspects of a running system. These aspects includes classes,
interfaces and methods. .NET adds the possibility to associate attributes (meta-data)
with classes, interfaces and methods [73]. These attributes are introduced at compile-time
and they can be inspected (but not modified) at run-time.

To summarise, all the existing platforms presented above only provide a limited set of
features (hooks) for the configuration and re-configuration of the platform, and in many
cases these features are not available at run-time.

2.1.2 I1SO RM-ODP

The ISO Reference Model for Open Distributed Processing (RM-ODP) [60, 61, 62] offers
a road-map for the design and implementation of middleware platforms. It differs from
existing popular middleware platforms in several important ways. First, it specifies differ-
ent types of interfaces for continuous media, signals and traditional operational methods
(invocations). Secondly, it specifies explicit bindings. Finally, it specifies support for
real-time synchronisation and dynamic quality of services management functions.

Continuous media and signals do not fit the traditional concept of operational interfaces.
An interface for continuous media interacts in a timely manner to transfer frames repres-
enting a period of data. This is very different from operational interfaces with a request
to a server followed by some processing of the request at the server followed by a reply
possible containing some results. The characteristics of a signal is also very different from
the characteristics of an operational invocation.

Most middleware platforms provide an implicit binding between remote objects. It is
called implicit since the actual creation (and selection) of the binding is hidden for the
user. It happens automatically when the user gets access to the interface of a remote
object. Such an implicit binding fits well for most operational interfaces because the
protocol takes care of transferring the request and reply safely over the network. This
might include retransmission and other time consuming tasks. Such protocols do not
work very well for continuous media. If a video is played over the network and a frame is
not received at the receiving end at the moment it should be played, it is better to throw
away this frame and concentrate on viewing the next frame in a timely manner. This can
be achieved by using a binding that fits well for this kind of application. Explicit bindings
make it possible for the programmer to explicit select and configure the communication
between the objects that interact.

The standard includes five different viewpoints. The technology viewpoint is concerned
with the technology needed to realise the system. The engineering viewpoint is concerned

18 Overview

with the mechanisms supporting distributed interactions. The computational viewpoint
views a system as a composition of objects interacting through well-defined interfaces.
The information viewpoint is concerned with the representation and semantics of stored
and processed information in the system. Finally, the enterprise viewpoint has a focus on
business rules, policies and roles in the system.

Evolution and dynamic reconfiguration are provided by the engineering viewpoint and its
engineering viewpoint language. It can be used to configure the components and functions
of the platform. In addition, the information viewpoint can describe the configuration of
the (running) system. However, no specific support to join these two viewpoints for
dynamic adaptation are specified.

2.2 Reflection
The reflection hypothesis introduced by Smith in 1982 [101] states:

“In as much as a computational process can be constructed to reason about
an external world in virtue of comprising an ingredient process (inter-
preter) formally manipulating representations of that world, so too a
computational process could be made to reason about itself in virtue of
comprising an ingredient process (interpreter) formally manipulating rep-
resentations of its own operation and structures.”

The importance of this statement is that a program can access, reason about and alter its
own interpretation. Access to the interpreter is provided through a meta-object protocol
(MOP) which defines the services available at the meta-level (in contrast of the application
and object functionality at the base-level). Initially, Smith’s work inspired a large body
of work to the field of programming language design [67, 108, 2]. Later reflection has been
applied to operating systems [113] and, more recently, distributed systems [82].

Open implementation is the motivation for reflective systems. If we hide implementation
details (by encapsulation) we also make implementation decisions on behalf of the applica-
tion. Knowledge available when the object is used (and not when it is implemented) could
lead to a more effective and suitable implementation. Open implementation exposes such
details and makes it possible to alter the implementation according to current knowledge.
However, there should be a principled division between the access to the functionality
provided by an object and its implementation. The functionality is available through the
base-interface of the object and the implementation is available through its meta-interface.

The split between base-level and meta-level (and possibly meta-meta-level) provides a
model for separation of concern. At the base-level only base-level functionality is of
concern. The meta-level exposes implementation details not of concern when programming
at base-level.

2.2 Reflection 19

Reflection provides a principled (as opposed to ad hoc) means of achieving open imple-
mentation. It can be used to inspect and adapt the system. By exposing the implement-
ation details it becomes straightforward to inspect the behaviour of the system. This can
be useful for debugging and to implement different monitor functions. Adaption makes it
possible to change the behaviour of existing features or add new features.

2.2.1 Models of reflection

In procedural refiection the self-representation of the system is the system’s own imple-
mentation. Altering the self-representation also alters the implementation of the system.
The self-representation and the system is causal connected.

In declarative refiection the self-representation is separated from the implementation
of the system. Altering the self-representation does not automatically alters the imple-
mentation of the system. The causal connection between the self-representation and the
implementation of the system has to be explicit maintained.

Structural reflection in an object-oriented context is concerned with the actual content
and structure of an object [108]. This includes the data and implementation of the object
(including its methods). For composite models the contained objects and the structure of
a composition can be exposed and accessed through structural reflection.

Behavioural reflection is concerned with the underlying system [108]. It exposes the
internal aspects of the run-time environment. It includes the activities of the underlying
system and the resources required to support these activities.

To model the different aspects of reflection in a system the meta-level can be divided in
a number of distinct meta-models [90]. The benefit of this approach is the simplified
interfaces provided by each meta-model of the meta-level. This separation of concern is
important in making the task of managing such meta-levels possible.

2.2.2 Reflective languages and systems

Reflection originated in the programming language community [101]. CLOS [52, 67] is
an example of a reflective lisp-based programming language. Reflective features in CLOS
and similar languages [78, 39] access its interpreter or virtual machine to expose and
manipulate the implementation of the language itself (behavioural reflection).

Standard Java also provides some limited reflective features [102]. These features can only
be used to inspect the structure of language entities (attributes and methods) and then
use this information to operate on these entities (limited structural reflection).

The Python language [76] also includes some reflective features [6]. These features can be
used to access and manipulate its language entities (structural reflection). Some limited
access (hooks) to the underlying system is also available (limited behavioural reflection).
One example is the meta-class hook that can be used to alter the behaviour of the con-
structor of a class.

20 Overview

Several research projects have extended existing languages with reflective features. Ex-
amples are OpenC++ [38], Iguana [54] and Reflective Java [111, 112].

Reflection has also been introduced in other type of systems with the need for customisa-
tion and dynamic adaptation. Examples are the operating system Apertos/Aperios [113]
and (distributed) architectures like CodA [81, 82] and AL-1/D [90].

2.2.3 Reflective middleware

Adding reflection to middleware to support customisation and run-time adaptation has
been done in several projects. Open-ORB [28] will be introduced in great details in the
next chapter. The following will list some other related projects and platforms.

The middleware platforms presented in Section 2.1.1 above only provide limited or no
access to implementation details or the underlying structure of the system. CORBA
has recently added features like dynamic invocation interfaces, portable interceptors and
policy objects, Java provides some limited inspection facilities and (static) deployment
descriptors for behavioural issues concerning EJB components, and COM+ introduces the
interceptor concept. However, none of these platforms can be considered to be reflective.

The Multe-ORB [47] is a flexible and adaptable middleware platform with the goal of
supporting a broad range of quality of service requirements of distributed multimedia
applications. To achieve this reflective techniques are used at the (transport) protocol
level.

FlexiNet [59] is a configurable middleware platform with focus on mobility (mobile ob-
jects). It provides an open binding framework with configurable protocol stacks. Intercept-
ors can be plugged into these protocol stacks to implement and customise non-functional
properties. Examples of such properties include transactional behaviour, access control
and replication. FlexiNet is implemented using the reflective extensions of Reflective Java
[111, 112]. FlexiBind [57, 58] is an extension of FlexiNet using policies to control the con-
figuration of the open binding framework. Meta-policies can be used to manage run-time
selection of policies. This makes it possible to do dynamic adaptation of the entire binding
configuration.

In dynamicTAO [95, 70] a CORBA platform is extended with the ability to dynamically
add strategies to and remove strategies from existing components. Different configurator
classes are available for the management of different entities. The interfaces of these
configurators are the meta object protocol (MOP) of dynamicTAO. They are used to load
new strategies and inspect components.

UCI/LegORB [96] is a related project using an explicit component based approach. The
configurable entities are components that represent customisation slots for different ser-
vices. These (abstract) components can also be added or removed from the system itself.
Example of usage is to provide different personalities of the core system (for example
CORBA or Java RMI). Simple personalities with small footprints can be used in hosts
with limited resources (PDA) [97].

2.3 Quality of service management 21

A similar approach is found in Quarterware [100]. Quarterware is a customisable middle-
ware architecture. In [100] its flexibility is demonstrated by deriving implementations for
core facilities of different existing middleware platforms including CORBA and RMI.

mChaRM [35] uses reflection to extend the traditional communication semantics of com-
munication channels with new behaviours and new semantics. A new reflective model
called multi-channel reification [5] is used for designing and developing complex com-
munication mechanisms.

All these platforms use reflection features to address only a limited set of the aspects
of the environment provided by the middleware platform. They either have a focus on
adaptation at the network protocol layer or on adaptation on the component structure of
the system.

2.3 Quality of service management

It is possible to distinguish between the functional and the non-functional properties
of a service. The functional properties describes the service provided while the non-
functional properties describes how this service is provided. A news-on-demands service
provides the news as a video-flow. The functional properties of this service is to select,
play, pause and stop such video-flows. The non-functional properties are the quality of
the received video service (number of colours, audio quality, response time on the controls,
and so on). These non-functional properties are the quality of service (QoS) parameters.

2.3.1 Quality of Service

The quality of a service says something about how well the service function is performed.
This includes something more than just ‘provided’ or ‘not-provided. The quantification
of the quality of a service differs on different level of abstractions.

The top-level abstraction is usually considered to be the impression the user gets from
the quality of the presented service. This can vary depending on the expectations and
needs of the user. Using a telephone the user expects the audio (the spoken words) to
be easy to understand and without any notable delays. This makes a phone conversation
(interaction) work as expected. A Hi-Fi enthusiast who is investing a lot of money and
time in her HW (amplifier, speakers, turntable, and so on) and SW (CDs and other
sources) expects the sound quality to be as close as possible to a live concert. Delay and
other non-audio-quality properties are of less importance. Quality properties, like the
impression a user has of the quality of the audio in a given service, can only be measured
subjectively. For example, a user can rank the quality of a given service using the terms
‘bad’, ‘reasonable’, ‘good’, ‘very good’ and ‘excellent’.

At a lower level of abstraction the quality of a network connection can be measured in
throughput (bits per second), delay (milliseconds), packet-loss (percentage), smoothness

22 Overview

QoS characteristic Example value
User impression of phone audio quality ‘good’

Network throughput (bandwidth) 1.8 Mbit /s
Maximum delay 23 ms
Maximum packet loss 1%
Smoothness (variation of delay) +3ms

Table 2.1 Examples of QoS characteristics.

(throughput variations) and so on. These quality properties are easy to quantify with
numbers. The throughput of a given network connection can be 1.87 megabits per second
with an average delay of 23 milliseconds. Quality properties like these are measured
objectively.

A given level of abstraction is based on QoS provided by lower level of abstractions and its
QoS abstraction is provided to higher level of abstractions. For example, a media player
has a level of QoS abstraction that specify the synchronisation between an audio stream
and a video stream. These values say something about two streams with given qualities
and how much these two streams can be out of sync and still provide the specified (lip-
sync) quality. The quality of each stream is provided by a lower level of abstraction, and
the provided abstraction is used at a higher level to specify the user level quality (the user
impression).

In the RM-ODP document “QoS—Basic Framework” [63] quality of service is defined as
“a set of qualities related to the collective behaviour of one or more objects”. The term
“collective behaviour” gives a hint about the different abstraction levels. At a higher
level the observed quality of a service is based on the collective behaviour of lower level
functionally and how well they perform according to the expected quality. The observed
audio quality of a phone application is based on the lower level quality of the network
connection including the network throughput, delay, packet loss and smoothness. The
resulting perceived quality for the user determines if the lower lever QoS characteristics
are sufficient in the given setting.

Quality of service (QoS) is expressed as QoS characteristics. The QoS requirements
and capabilities represents what the user (or a component) wants and what the system
provides, respectively. A system can meet the requirements of a given application. Ex-
amples of some QoS characteristics at different abstraction levels are provided in table
2.1.

2.3.2 Management

QoS management is the task of establishing and maintaining these non-functional prop-
erties. As stated in the previous chapter, this work will focus on the dynamic quality

2.3 Quality of service management 23

of service management functions. In particular, the focus will be on monitoring and
maintenance of quality of service properties. Monitoring is concerned with monitor-
ing the quality of the service being offered and reporting any problems of achieving this.
Maintenance is concerned with actions that can be taken to sustain the quality of service.

Static QoS management functions are ignored in this work for two different reasons. The
first reason is that a lot of work on static QoS management functions has already been
presented in the literature (examples of such work can be found in [55, 33, 92, 74, 86]).
An overview presenting a lot of interesting work on this topic is found in [15]. The other
reason is that the adaptation mechanisms needed for dynamic QoS management functions
match the features provided by a reflective system very well. In [107] the use of reflective
features to implement a CORBA Component Model compliant ORB that dynamically
adjusts component QoS properties at run-time is explored.

The QoS characteristics that the dynamic management system should manage are ex-
pressed using a QoS specification [1]. The specification provides a description of the
quality the management function should help the system to satisfy. A QoS specification
at a higher level has to be mapped down to a set of low level specifications (in combin-
ation with other higher level specifications). This work will not include details about
QoS specifications and the mapping of higher level specifications to a set of lower level
specifications.

Monitoring is used to collect the information needed in the management task. A static
set of monitors are not flexible enough in a reflective system that can be re-configured at
run-time. Interceptors and other reflective features can be used to dynamically introduce
monitoring into a running system [109, 70]. Monitors should also filter the collected
information and only forwards the relevant information to the decision process.

To maintain the specified QoS the management system has to perform the management
functions based on the input from its monitors (and the state of the management func-
tions). These management functions includes the decision making process (what actions,
or any actions?), and the process of performing the decided actions. Reflective systems
provide the possibility to adapt. These adaptation functions support a flexible set of
management functions (performed maintenance actions) [71, 72].

24

Overview

Chapter 3

Open-ORB

This chapter gives an introduction to the Open-ORB! architecture at Lancaster University.
Open-ORB is a reflective middleware platform supporting inspection and adaption of
application and system components. The work described in details in part II (OOPP) is
closely related to the Open-ORB project.

3.1 Reflective middleware

The role of middleware is to present a unified programming model to application writers
and mask out the problems of heterogeneity and distribution [16, 45, 68]. Middleware
has a similar role in a distributed system that the operating system has on a computer:
to hide the low level details and present a unified programming model. Middleware and
operating systems also share common problem related to their usage. The problem was
stated clearly by Per Brinch Hansen in his book “Operating System Principles” [34]:

“One of the difficulties of operating systems s the highly unpredictable
nature of the demands made upon them.”

Middleware has to remain responsive to new challenges and demands from existing and
new type of applications. Some of these new difficulties that are emerging are

i) support for multimedia,
ii) real-time requirements, and

ili) increasingly mobility.

These different and unpredictable challenges are the motivation for the next generation
middleware architecture in Open-ORB [28]. One key feature to meet these challenges is

25

26 Open-ORB

adaption. Randy H. Katz summarises the requirement for adaption with mobility in the
following observation [66]:

“Mobility requires adaptability. By this we mean that systems must be
location- and situation-aware, and must take advantage of this informa-
tion to dynamacally configure themselves in a distributed fashion.”

It should be possible to configure the underlying support offered by the middleware plat-
form to satisfy the requirements from a wide variety of applications. Example of such
configurations are scheduling policies, special protocols for multimedia and resource man-
agement. Another important requirement is the possibility to inspect and adapt the
support offered at run-time. This is in Open-ORB done by adapting an open engineering
approach through the concept of reflection (see section 2.2).

Current generation middleware only have limited (if any) support for configurability and
open engineering. Implementation details are hidden and services are available through
a set of interfaces (APIs) to a black box. There are several good reasons for doing this?
but recent experiences with these platforms suggest that this is to restrictive to a lot of
application types. OMG has as a result of this recently added some interfaces to the
underlying system i CORBA. But these approaches provide limited openness to a limited
set of selected components and they are rather ad hoc.

3.2 General principles

The Open-ORB architecture tries to overcome the limitations in current middleware plat-
forms by opening up the ORB. This is done through the concept of reflection. The general
principles of this architecture is described below.

3.2.1 Procedural reflection

A reflective architecture can either support procedural or declarative reflection [78]. In
the declarative approach the self representation is given by a set of declarative statements
describing the behaviour of the system. This abstract approach focuses more on what
the implementation of the system should achieve and not on how this is achieved. The
casual connection is however more difficult to achieve in a declarative approach since
the behaviour of the system is not observed (and accessed) directly. In the procedural
approach the representation of the system is given by the actual implementation. The
representation of the system then shares the computational model of the system. The
representation of the system available through reflection is called the meta-space of the
system. Programming done in the meta-space is called meta-space programming.

Another advantage of a procedural approach is that it is more primitive and has less
restrictions compared to a declarative approach. It is also possible to build a declarative

3.2 General principles 27

interface on top of procedural reflection if a more abstract model is convenient (but not
vice versa). An procedural approach to reflection is chosen in the Open-ORB architecture.

3.2.2 Object-oriented

Object-oriented models have a predominance in open distributed processing systems [29,
87] and Open-ORB adapts such a model of computation.

The object-oriented model is common in reflective languages and systems. The important
synergy between reflection and object-orientation explained by Kiczales et al in “The Art
of the Metaobject Protocol” [67] is an important motivation for this:

“ Reflective techniques make it possible to open up a language’s implement-
ation without revealing unnecessary implementation details or comprom-
1sing portability, and object-oriented techniques allow the resulting model
of the language’s implementation and behaviour to be locally and incre-
mentally adjusted.”

3.2.3 Per object meta-spaces

Since an object-oriented programming model is adopted, a per object way of applying
reflection is also adopted. The result is a fine level of control over the support provided
through the meta-space. The limit of the scope of change also minimise the problem of
maintaining the integrity of the system. Changes done through reflection of one object
does not directly effect the other objects. A heterogeneous environment includes different
types of objects with a variety of capacities for reflection. This difference also encourage
per object meta-space. In situations where it is useful to be able to access the meta-space of
sets of objects in a single operation the intention is to use a group mechanism. ABCL/R2
[79] provides an example of how such a group mechanism could be implemented.

3.2.4 Multi model approach

Like in the AL-1/D framework [90] the meta-space is divided in several meta-models
represented by meta-objects. Each object have potentially one meta-object per meta-
model. The behaviour of an object can be changed by modifying its meta-space through
its meta-objects. The meta-objects are causally connected to their (base-level) object. The
meaning of this is that changes done to an object through its meta-object are immediately
visible in the object (and vice versa).

The motivation for multiple meta-models is separation of concerns. Each model provides
access to distinct structural or behavioural issues of an object. Structural reflection is
concerned with the actual contents of a given object and behavioural reflection is concerned
with the activity in the underlying system [108]. Four distinct meta-models have been
identified and developed in the current Open-ORB architecture. A closer description of
each model follows in section 3.4.

28 Open-ORB

o
«» 0

Figure 3.1 Components q, b, ¢, d and an explicit binding with their infrastructure.

3.2.5 Otbher principles

It is a strong level of recursion in the meta-object approach in Open-ORB since meta-
objects are, like other objects, also open to reflection. And since a meta-object only exists
theoretically until it is actually accessed infinite levels of meta-objects are (theoretically)
available. This is similar to the reflective approach in ABCL/R [108]. Such access to
different meta levels is important since it makes it possible to inspect, manipulate and
extend even the meta-models (and meta-meta-models) of objects and interfaces. This can
be used to expose and modify the policy behind the adaption provided.

3.3 Programming model

The programming model adapted in this work is mainly influenced by the RM-ODP [60, 61]
computational viewpoint where

i) objects can have multiple interfaces,
ii) operational, stream and signal interfaces and bindings are supported, and

ili) explicit bindings can be created between compatible interfaces.

Many of the concepts introduced here match the definitions found in the foundations and
the architecture part of the RM-ODP documents [61, 62].

Objects and bindings are contained in capsules (managed address spaces). Remote bind-
ings can make connections between interfaces in different (remotely separated) capsules.
Interfaces and capsules can be located using a naming service. Figure 3.1 is an example of
some components and their infrastructure. A and B are two different capsules containing
the components a, b, ¢ and d. Object a is bound to a name server n with an implicit
binding. There is an explicit binding between object b and c. The other interfaces of the
objects and the bindings are connected with local bindings.

The programming model presented here does not include the concept of clusters from
RM-ODP. Clusters in RM-ODP are the unit of deactivation, check pointing, reactivation,

3.3 Programming model 29

recovery and migration [62]. The unit for these functions in Open-ORB are components
(see 3.3.2) and abstract resources (see resource meta-model in section 3.4.4).

3.3.1 Interfaces and local bindings

Interfaces represent access points to objects (and components). Each interface represents
a set of methods related to its object. Interfaces are introduced to disconnect statically
relations between objects. An object with interfaces can connect (bind) to any other
object with a matching interface. The methods of an object are then called through their
interfaces and not directly using the object and method name pair. This includes method
calls to the object and from the object (incoming and outgoing method calls or messages).

When two objects with matching interfaces have been created, there is no association
between them until they are explicitly bound to each other. The most primitive form of
binding that can be created between two interfaces is a local binding. A local binding
is always between interfaces in the same address space (capsule). When a local binding
between two interfaces is created type checking is performed to see if they match. The
type (or the signature) of the interfaces can be described in CORBA IDL or a similar
syntax.

3.3.2 Components

Objects usually exists as components in the Open-ORB framework. A component is a
unit for composition and independent deployment [103]. They are developed and de-
livered independently and provide access to its requested and provided services (methods)
through one or more specified interfaces. All interactions between components are spe-
cified through these well defined interfaces. Such an interface connection architecture has
a basic conformance criteria that says that the system’s components interacts only as spe-
cified in their interfaces [75]. The connections (the dependence between components) are
explicit and an attempt to locate components affected by changes to an interface becomes
easier. This is important when possible replacements and restructuring of components in
a system are determined.

Components take the interface approach one step further. It makes the interfaces of an
object available without any pre-known knowledge of the object providing them. The
interfaces provided can be browsed and access to a given interface is done by its key
(name). A primitive component encapsulates one object and provides access to and from
the object through one or more interfaces.

A composite component contains a set of other components represented with a component
graph. Composite components makes it possible to represent a complex structure of
components bound together in an object graph as a single component with a set of well
defined interfaces.

30 Open-ORB

Audio-binding

Video-binding

Figure 3.2 The AV-stream is a composite component containing a split component s, an audio-
binding, a video-binding and a synchronisation component m. The audio- and video-binding are

composite components.

The component graph specifies the local bindings between the different interfaces of the
components contained in the composite component. A component contained in a com-
posite component can again be a composite component. This recursive component con-
tainment is terminated by primitive components. The set of external interfaces provided
by a composite component is a mapping from a subset of the interfaces of its contained
components.

An example is the AV-binding (audio-video binding) component in Figure 3.2. It contains
a split component s (splits the AV-stream in one audio stream and one video stream
at the sending side), an audio-binding component, a video-binding component and a
synchronising component m (merges and synchronises the audio and video stream at the
receiving side). The split and synchronising components are primitive components, but
the audio- and video-binding components are composite components containing stubs and
lower level bindings. The layered structuring is terminated in audio- and video-binding
components if their contained stubs and lower level bindings are primitive components.

A composite component can be distributed. A distributed composite component contains
components located in different address spaces. These address spaces can be located on
different nodes. Components in different address spaces can be bound (connected) with
binding objects.

Binding objects hide the complexity and protocol issues of remote communication and
help providing location transparency. A binding object is a component, and usually a
distributed component. A typical binding object is a composite component containing
stubs and a lower level binding.

3.3.3 Capsules

Components in Open-ORB exist in managed address spaces called capsules. A capsule
provides a set of services for the managing of the components located locally. Every
component in the Open-ORB programming model is under the control of one capsule.
The services of the capsule can be provided both to local and remote components.

3.4 Reflection through meta-models 31

Resources

// @ /// \\\ \\
‘o’e |
d\@

Composition Environment

Figure 3.3 An object and its four meta-models.

3.4 Reflection through meta-models

We can distinguish between structural and behavioural aspects of reflection [108]. The
structural aspects is concerned with the actual contents of a given object and the beha-
vioural aspects are concerned with the activity in the underlying system. In Open-ORB
these two aspects are represented by four distinct meta-models [90]. Structural aspects
are represented by the encapsulation and the composition meta-models, and behavioural
aspects are represented by the environment and the resource meta-models. Figure 3.3
illustrates an object with its four meta-models. Each meta-model of the object are ac-
cessed through its meta-object [108]. A description of each model follows below. The
meta-models representing the behavioural aspects are only given a brief description since
the exploration of them still is ongoing work. The prototype presented in the following
chapters does not implement these meta-models.

3.4.1 Encapsulation meta-model

The encapsulation meta-model opens up the encapsulation provided by objects. It makes
it possible to inspect, modify and extend the implementation of an object. This meta-
model can be used to monitor and control all access to an object (including access to its
attributes and methods).

The encapsulation function returns an encapsulation meta-object representing the encap-
sulation meta-model of the given object or interface. The encapsulation meta-object is
always located in the same capsule as the object or interface it is controlling. Access from

32 Open-ORB

another capsule could be provided by a meta-object proxy with a implicit binding to the
actual meta-object.

Typical operations done on a component or an interface using the encapsulation meta-
object include to add a new method to the component, to add pre-, post-, and wrapping-
methods to a method of the component and to replace the implementation of a method
of the component.

3.4.2 Composition meta-model

Composite components are used to group together a set of components that naturally
belongs together. They also ease the handling of complex components through its layered
structuring terminated by primitive components.

Typical composite components are complex binding objects. The adaptability needed
for multimedia applications in a mobile environment identifies a need to manipulate and
restructure (change and extend) the component graph of such complex binding objects
during their life cycle. A composition meta-model is provided to achieve this.

The composition meta-model is empty for all non-composite components (primitive com-
ponents). The composition meta-model provides access to the component graph rep-
resenting the composite component. The composition function returns the composition
meta-object representing the composition meta-model of the given component. Every
external interface of the composite component return the same composition meta-object.
The components found in the component graph of a composite component are not neces-
sary located in the same capsule, but they are all accessible from the same composition
meta-object. Typical operations done on a composite component through its composition
meta-model are replacement of contained components and extension of the existing com-
ponent graph with new components [51]. An example is to add a buffer component to the
sink side of a stream binding to handle jitter.

3.4.3 Environment meta-model

The execution environment of interfaces manages messages (method calls) sent through
these interfaces. The management includes synchronisation and scheduling between mes-
sages sent and received. Access to the execution environment can be used to change the
policy of this management. This management in ATOM [91] is separated from the actual
implementation of the methods.

The environment meta-model exposes the execution environment of each interface. This
includes on the sender side of a method call (or message) initiating, enqueing, selection,
marshalling and transferring, and on the receiver side of a method call arrival, enqueing,
selection, unmarshalling and dispatching. An example of a possible implementation of
this model is described in [42].

Notes 33

High level
abstract
l Provided-by resources
T Provides
l Manages
T Managed-by Low level
abstract
resources

Figure 3.4 The resource framework consists of managers managing lower level abstract resources

and providing higher level abstract resources.

The implementation of this model in Open-ORB is a candidate for further research, but
related work has been done in ABCL/R [108] and CodA [82]. The environment function
will return an environment meta-object that is a composite component representing the
environment of the given interface. The object graph of this composite component can be
manipulated by fetching the composite meta-object of the environment meta-object.

3.4.4 Resource meta-model

Multimedia components like continuous media objects require a guarantee for available
resources to perform as expected. The resource meta-model exposes the allocation and
management of (abstract) resources associated with an object or an interface. These
resources are a part of the resource framework that provides a complete and consistent
model of the system resources at different levels of abstractions. Higher level of abstract
resources are provided by managers managing lower level of abstract resources [94]. Figure
3.4 illustrates the relations between a manager and abstract resources (see [25] for more
details). The resource function returns a resource meta-object used to manipulate these
abstract resources.

Notes

1. More information about the Open-ORB project is available from http://www.comp.
lancs.ac.uk/computing/research/mpg/reflection/

2. The main reason to provide a middleware platform as a black box with a set of pre-
defined interfaces is to hide the complexity of the underlying system for the application
programmer. For a lot of traditional client-server based applications is this hiding of
complexity (transparency) a good thing.

34

Open-ORB

Part Il

Essence

35

Chapter 4

OOPP design issues

This chapter will present some design issues for OOPP, the prototype of the Open-ORB ar-
chitecture described in the previous chapter. The presentation of these issues are split into
three sections. The first describes the selected programming model, the second describes
the infrastructure for this programming model, and the last describes the meta-models.
But before that, a brief description about the influence from the RM-ODP framework will
be presented.

4.1 RM-ODP

The programming model and the infrastructures of OOPP are influenced by the ISO
Reference Model for Open Distributed Processing (RM-ODP) [60]. RM-ODP is an object-
oriented system specification methodology based on the concepts of viewpoints. It provides
vocabulary and grammar for describing a distributed system from each viewpoint. OOPP
does not have a similar viewpoint concept. However, the separation between a base-model
(the programming model and its infrastructure) and a set of meta-models in OOPP is
related to the viewpoints of RM-ODP.

The computational viewpoint of RM-ODP is concerned with the description of the system
as a set of objects (or components) that interacts. This interaction happens at interfaces.
This is closely related to the programming model provided by OOPP. In OOPP a system
contains a set of objects or components that interacts through interfaces. Interfaces are
connected with local bindings or with binding objects.

The engineering viewpoint of RM-ODP is concerned with the mechanisms supporting
system distribution. This is closely related with the infrastructure of OOPP. The infra-
structure of OOPP provides capsules similar to capsules in RM-ODP. The capsules are
managed address spaces (storage) with processing resources. The infrastructure of OOPP
also consists of name servers, node managers and factories.

37

38 OOPP design issues

The technology viewpoint of RM-ODP is the closest match to the reflective features of
OOPP. However, the reflective features of OOPP available through the different meta-
models provides a completely different approach to accessing the implementation of the
system. The meta-models are available for objects and components representing both the
base-level (application) and the infrastructure.

One important reason to use (a limited set of) the rich vocabulary and grammar of RM-
ODP can be summarised in two features:

i) Different types of interfaces for operational methods, continuous media and signals

ii) Explicit bindings

These features in OOPP will be elaborated below.

4.2 The programming model

The OOPP programming model provides interfaces, components and bindings as its key
features. Similar features are found in the computational viewpoint of RM-ODP [61].

4.2.1 Objects and classes

In OOPP the term object have its traditional meaning. More precisely, an object in OOPP
is a Python object. The implementation of an object is given by its class. An object is
an instance of its class created with the constructor of the class.

4.2.2 Interfaces and local bindings

An interface of an object defines a subset of the interactions of that object [61]. Examples
of such interactions are invocation of methods provided by this object and invocations of
methods in other objects done from this object. It is important that these interactions
includes both in-coming and out-going method calls since every interaction of the object
should (possibly) be defined by interfaces. If every interaction of an object is defined by a
set of interfaces, this set of interfaces represents a complete description of every possible
interaction of that object.

It is possible to distinguish between different types of interfaces. Interfaces of ordinary
method invocations are named operational interfaces. Other possible interface types
includes signal and stream interfaces. The need for different interface types is motivated
by the different behaviour and characteristics of these types of interactions. A signal
contains none (or at least a small amount of) data and should be safely delivered in-time
to the receiver. A stream is a sequence of data frames that should be transfered in a
periodical cycle possible with real-time constraints.

4.2 The programming model 39

An operational interface could possibly contain methods provided and methods requested.
Methods provided by an object through an interface are called exzported methods of that
interface. Methods requested by an object through an interface are called the imported
methods of that interface. It is possible to decide to have two different types of operational
interfaces. One type used for exported methods and one type used for imported methods.
An object could then be using interfaces for exported methods to provide its methods to
other objects and interfaces for imported methods to access the methods of other objects.

Interfaces are illustrated in the following simple example. An object a implements a
method f and have an interface i. Method f is available for other objects through interface
i since interface i exports f. An object b has an interface j that imports a method f. Object
b uses interface j to call an external method f implemented in an object with an interface
that exports a method f. This other object could be object a with interface i.

OOPP does not distinguish between operational interfaces that export and import meth-
ods. Every operational interface in OOPP can contain both exported and imported meth-
ods. The programmer however is free to adopt a style of programming where she distin-
guish between interfaces for exported and imported methods. The main motivation behind
two-way operational interfaces in OOPP is the flexibility of this approach. This approach
does not enforce any particular style of programming. An application programmer can
decide to use only one-way operational interfaces (operational interfaces with either only
exported methods or only imported methods). She could even create her own specialised
interface class with behaviour based on the original two-way operational interface class. In
some cases, the interaction between two objects could at one point be initiated from one
object and later be initiated from the other object. It is possible with two-way operational
interfaces to implement these interactions with one interface at each object. An example
is an object a that call a method of object b to register for a given event. Later, object b
calls a method of object a to notify object a that the event occurred. These interactions
can be implemented using one two-way operational interface in both objects.

The methods provided by an object are exported in one or more interfaces. The methods
of other objects used from the object are imported in one or more interfaces. One reason
to introduce interfaces is to disconnect a statically relation (binding) between objects. An
object with an interface can connect (bind) to any other object with a matching interface.
The method calls are not done directly to the object but through its interfaces.

When two objects with matching interfaces have been created, there is no association
between them until they are (explicitly) bound to each other. This means that object b
can not call method f in interface i of object a through its interface j before a binding is
created between interface j and interface i. The most primitive form of binding that can
be created between two interfaces is a local binding. A local binding is a way of saying
“the reference to the imported method f in this interface is actual the exported method
f of this other interface”. Figure 4.1 illustrates a local binding between interface i and j
of object a and b. Interface i exports the method f of object a and interface j imports a
method f. Object b can call method f of object a when interface i and j is bound with a
local binding.

40 OOPP design issues

Figure 4.1 Two objects a and b with interfaces i and j bound with a local binding.

A local binding is always between interfaces in the same address space (capsule). When a
local binding between two interfaces is created type checking is performed to see if they
match. The type (or the signature) of the interfaces could be described in a CORBA IDL
like interface syntax. Current version of OOPP only checks if the names of the methods
match. Two interfaces match when the exported methods of one interface match the
imported methods of the other interface (and vice versa)?

A local binding between two interfaces is the mechanism provided to connect (bind) and
disconnect (break) matching interfaces. An interface can be bound with a local binding
to any matching non-bound interface in the same address space. A local binding can later
be broken. The involved interfaces are then unbound and can be reused in another local
binding.

An interface is only useful together with another interface. If an object a has an interface i
with an exported method f it is not possible to call this method directly through interface
i. Another interface, for instance j, that imports a matching method f has to be used to
call the method. When a binding is created between these two interfaces method f can
be called through the interface j in the same way it can be called directly through object
a. This makes it possible to use an interface as a proxy (in CORBA terminology) for
an object. Typically, such an interface j imports every method of a, and is bound to an
interface 1 of a that exports every method of a. Interface j can now be used to call the
methods of a in the same way as if it was a itself. This is particularly useful when the
objects are remote to each other. The local binding can transparently be replaced with a
binding over a network (see bindings in section 4.2.4).

The only way to access an interface is through its interface referemce. An interface
reference can be (with support from the infrastructure) a global identifier for an interface.
It is the unit used to export and import services in the programming model. An interface
reference contains the description of the exported and imported methods and a reference to
the object the interface is related to (possible none if the interface only imports methods).
By convenience, an interface reference and the interface it is representing are often referred
to using the same name.

Stream and signal interfaces exist in a source and a sink pair. A matching stream or
signal interface source and sink pair can be bound with a local binding. The signal or
stream from a source interface is transfered to the sink interface it is bound to.

4.2 The programming model 41

Figure 4.2 A composite component ¢ containing two components a and b.

4.2.3 Components and composite components

Components are the building blocks of the OOPP programming model. A component in
OOPP is an object exposing its interfaces in a standard way or a special object exposing
the interfaces of the object (or the objects) it wraps in a standard way. Each interface of
a component is represented by a mapping from a name to an interface reference.

A primitive component encapsulates one object and provides access to (exports) a set
of its methods through one or more interfaces. These interfaces also provide access to
(import) external methods used from the encapsulated object. A component class is
provided to create components encapsulating one object.

A composite component contains a set of other components represented with a compon-
ent graph. Composite components represents a possibly complex structure of components
as a single component with a set of well defined external interfaces. A composite com-
ponent always contains components and not just ordinary objects. The reason is that
the component graph describes the connections between the interfaces of the contained
components, and these interfaces have to be exposed in the standard way provided by
components.

The component graph specifies the local bindings between the different internal interfaces
of the components contained in the composite component. A component contained in a
composite component can again be a composite component. This recursive component
containment is terminated by primitive components.

The set of interfaces provided by a composite component are a mapping from a subset of
the interfaces of its contained components. This implies that an interface provided by a
composite component is a mapping to an interface in one of the contained components.
Figure 4.2 shows a simple composite component ¢ with two (external) interfaces c; and c,,
two contained components a and b and one local binding between interface a, and b; in the
object graph. The external interface c; is a mapping to interface a; of component a and the
external interface c, is a mapping to interface b, of component b. A composite component
class is provided to create composite components from a set of existing components.

A composite component can be distributed. A distributed composite component contains
components located in different address spaces (capsules). These address spaces can again

42 OOPP design issues

Cc

i T 12
N oo oy

Figure 4.3 A binding containing two stubs s and s;, a TCP/IP binding and three interfaces 1,

i, and c. Interface c is a control interface.

be located on different nodes. Components in different address spaces can be bound with
a special type of components called bindings.

4.2.4 Bindings

Connections (communication) between components in different address spaces possibly on
different nodes is enabled with a special component type called bindings. A binding hides
the complexity and protocol issues of remote communication and helps providing location
transparency.

A binding is a component, and usually a distributed component. A typical binding is a
composite component containing stubs and a lower level binding. Figure 4.3 is an example
of a binding object containing two stubs s; and s,, and a TCP/IP binding. Most bindings
have (at least) three interfaces, two for the actual binding between two interfaces (i; and
i, in Figure 4.3) and one to control the binding (c in Figure 4.3).

A binding can either be implicit or explicit. An tmplicit binding between two interfaces
is created by the infrastructure and is under no control of the application programmer.
An implicit binding is usually created when a service is imported. An ezplicit binding is
based on the programming structures used by the rest of the application components in
the programming model. The creation is usually initiated and controlled by the applic-
ation programmer. This gives the application programmer control over the creation and
configuration of the binding. This is important in order to support multimedia and meet
the demands from new application areas.

Three different kinds of bindings are available in OOPP:
i) Operational bindings
ii) Signal bindings
iii) Stream bindings
An operational binding is used to forward a method call from an interface importing

(requesting) the method to another interface exporting (providing) the method, and (op-
tionally) returning the result back. This kind of binding can either be generic supporting

4.2 The programming model 43

(a) Operational (b) Signal (c) Stream

Figure 4.4 Different kinds of bindings used to connect operational, signal and stream interfaces.

operational interfaces with arbitrary signatures, or it can be specialised to support only one
type of interface pairs. Generic bindings adapt to any interfaces with any signatures. A
generic binding can be compared with the Dynamic Invocation Interface (DII) of CORBA.
However in CORBA this is done by directly accessing the underlying request mechanisms
provided by an ORB. In OOPP the generic bindings adapts to the given interfaces and the
interface-specific stubs are not bypassed. A specialised binding supports only interfaces
with a given signature.

A signal binding supports a set of one-way signals (communication paths) where no replies
are possible. A signal flows from a signal source (sender) to a signal sink (receiver). A
stream binding supports continuous media like audio and video. A stream flows from a
stream source to a stream sink. Figure 4.4 illustrates how these different kinds of bindings
usually are drawn.

A standard operational binding is provided. It can be used in the same way as a local
binding between two interfaces with the exception that the interfaces can be located in
different address spaces (capsules) and/or on different nodes. Since standard operational
interfaces can have both exported and imported methods this standard binding provides
a two-way operational binding. A two-way operational binding supports method calls
initiated in both directions (interfaces on both sides of the binding can export and im-
port methods). This standard operational binding is created with a provided operational
binding class. The interface references of the two interfaces to be bound are provided as
arguments to the constructor of this class. The result is a binding with interfaces that
matches the two given interfaces. This is a generic binding since it will adapt to any
interface references provided as arguments to the constructor.

Three different versions of operational bindings are provided [62]:

i) Synchronous interrogation binding
ii) Asynchronous interrogation binding
iii) Announcement binding
A synchronous interrogation binding (or an RPC binding) supports method calls with

a call (invocation) and reply (termination) structure. The call is blocked until the reply
is received from the invoked method. An asynchronous interrogation binding is similar

44 OOPP design issues

to the synchronous interrogation binding, but the call is not blocked. The caller must
later invoke a receive reply call to pick up the result (reply). An announcement binding
supports only the invocation part of a method call. No reply is possible.

A traditional operational binding (for instance in RM-ODP) has one client stub and one
server stub. Since the standard operational binding provided in OOPP is a two-way
operational binding, both stubs are equal and have the functionality of a client stub and
a server stub. Implicit bindings provided by the infrastructure are often synchronous
interrogation bindings since their characteristics can be compared with local bindings.

Access transparency hides the difference between accessing local and remote services.
Implicit bindings and a matching interface or proxy are used in OOPP to create access
transparency. The proxy is used to access the remote interface in the same way as a local
interface is accessed. The result of the import services of the name server (see Section
4.3.2) are examples of such proxies providing access transparency.

4.3 The infrastructure

The infrastructure is the supporting environment for programs in OOPP. A component
becomes a part of this infrastructure when it is located in a managed address space called
a capsule. The infrastructure is influenced by some parts of the engineering viewpoint of
ISO RM-ODP [62].

4.3.1 Capsule

A managed address space in OOPP is called a capsule. A capsule provides services for
its local components (the components located in the address space it manages). It can
also provide services to remote components through a capsule proxy. A capsule proxy
and a local capsule have identical interfaces, but the requests through a capsule proxy
are forwarded to the capsule it represents and the replies are returned back to the caller
through the proxy.

The purpose of a capsule is to provide an environment for the OOPP components to exist
in. An OOPP component is deployed in a given capsule. It can later be destroyed or
migrated to other capsules. A component that is deployed in a capsule is instantiated
in the address space managed by the capsule and registered in the component register
of that capsule. Every registered component is given a local unique identifier. A local
unique identifier is guaranteed unique in its capsule. A global unique identification of
a component is constructed from a capsule proxy representing its capsule and its local
unique identifier.

The capsule provides services to get the global interface reference of an interface of
a registered component by using the unique local identifier of the component together
with the name of the interface. The returned global interface reference differs from the

4.3 The infrastructure 45

(local) interface references discussed earlier in one important way. They provide a global
unique identification of an interface. They contain enough information to be used in
any capsule still identifying the right interface, even if this interface is located in another
remote capsule. The differences between a local and a global interface reference are usually
hidden for the application programmer. However, the application programmer should
always use interface references provided by the capsule (or a naming service) when she
creates distributed applications (applications involving different capsules).

The reason local interface references exist at all is related to when different parts of a
complex environment like OOPP come into existence. The programming model presen-
ted in section 4.2 exists before (or without) the OOPP infrastructure. An application
programmer creates interfaces using local interface references without the knowledge of
the infrastructure. The infrastructure later automatically transforms these local interface
references to global interface references. A global interface references can only be created
with some knowledge about the infrastructure. However, the application programmer does
not have to worry about it as long as she uses interface references provided by the capsule
(or a naming service) in a distributed context. The scope of a local interface reference is
its local address space (or capsule). The scope of a global interface reference is global.

The capsule prozy is a local representation of a remote capsule. A capsule proxy can
be created with some knowledge about the remote capsule. This knowledge includes the
location (the node) of the remote capsule and where (the port) the capsule is listening for
requests. A capsule is only available through a capsule proxy when it explicitly has made
its services available by starting its serve loop. The services of the local capsule is always
available for its components.

The differences between the access to the local capsule and to remote capsules (through a
capsule proxy) are usually not visible for the application programmer. The interfaces of
the local capsule and a capsule proxy are equal and often used transparently. Usually, the
application programmer does not have to care if she is using the local capsule or a capsule
proxy. This is another example of the access transparency provided by OOPP.

A capsule provides services to manage local bindings. These services are useful when a
local binding in a remote capsule has to be established or broken. The request is then
done through a capsule proxy.

A capsule also provides some low-level features used to call methods of the interfaces of
registered components. These low-level-method-call features are mainly available for the
programmer who wants to implement new types of bindings. They are not meant to be
used by the application programmer. Three different types of invocations are available:

i) Synchronous messages where a call is done and the caller waits for a reply
ii) Asynchronous messages where the caller picks up the reply later
iii) Announcement where no reply is given (and no return values are possible)

The perceptive reader will see the similarity with these types of low-level invocations and
the different types of operational bindings presented earlier.

46 OOPP design issues

4.3.2 Name server

How should a program get access to or locate a remote interface? A naming service
provides the solution. It provides a way of getting access to remote interfaces based on
an address or a name. The program applies a unique name or address identifying the
interface and the naming service returns a (global) reference to this interface.

OOPP provides a simple naming service by one or more name servers. They are used
to get access by names to interfaces and capsules in the form of interface references and
capsule proxies respectively. A name server is identified by a node identifier (IP address)
and a port number. A default port number is used if one is not specified (the default OOPP
naming service port). A name server is accessed through a name server proxy. A name
server proxy can be created from the name server proxy class when the node identifier and
the (optional) port number are known. A different approach could be to identify a name
server or even a service (interface) by an URL. This requires some additional support from
the web servers?

A capsule is exported (registered) in a OOPP name server with a name. An import
method (a request) to the name server using this name will return a capsule proxy repres-
enting the registered capsule. The returned capsule proxy has an implicit binding to the
capsule. The capsule proxy can be used immediately to access the services of its capsule.
Similar export and import methods are available from the name server to every kind of
interface in OOPP. The import method for interfaces returns a global interface reference.
An implicit operational binding is automatically created to the remote interface. The
returned interface reference can be used immediately to invoke the methods of the remote
interface. This is similar to a proxy in CORBA terminology. The returned interface ref-
erence or proxy is a local representation of a remote interface or service. The remoteness
of the interface or service is hidden by the proxy providing access transparency.

Sometimes the application programmer needs to control the creation of a binding between
two (remote) interfaces. The name server supports this by providing a lookup method on
interfaces. The lookup method returns an interface reference but no implicit binding is
created. The returned interface reference can be used later to actually create a binding to
the remote interface.

An important difference between the import and the lookup methods of a name server is
the returned interface reference. The interface reference returned from a lookup method
is a global interface reference for the remote interface exported. The interface reference
returned from an import method is a matching (opposite) interface reference. For example,
if the remote interface exports the methods f and g and imports no methods, the returned
interface reference from a lookup also represents an interface that exports methods f and
g and imports no methods. However, the interface reference returned from an import
method represents an interface that exports no methods and imports method f and g.

4.3 The infrastructure 47

4.3.3 Node manager

In the RM-ODP architecture document [62] a node is defined as a “configuration of en-
gineering objects forming a single unit for the purpose of location in space, and which
embodies a set of processing, storage and communication functions.” An example of a
node is a computer and its software. OOPP has adapted this definition of a node.

Each node in OOPP can serve several capsules. The node managers task is to ensure that
the capsules can coexist on a node without unintentionally interfering with each other.
This involves managing shared resources like connection ports on the node. The node
managers are meant to be invisible and they can be completely ignored by the application
programmers. Their services are automatically accessed by the infrastructure (capsules
and low-level bindings). A node manager is also accessed through a proxy. Each capsule
has a node manager proxy used to access its local node manager. The node manager is
usually started automatically when the first capsule is started on a node.

4.3.4 Factories

New components and objects are usually introduced in an object oriented programming
model with a class. In a programming model with distributed objects and composite
components and possibilities for resource reservations and management this approach is
not feasible. A new service feasible to perform these complex tasks is needed. This service
is called a factory.

The task of a factory in OOPP is to add new components in capsules. Factories range
from generic to specialised. A specialised factory create one type of components where
the user specifies little or nothing to influence the creation process. A generic factory
needs more information from the user and can create a much broader range of different
components. A typical factory in OOPP creates a distributed composite component.

A binding factory is used to create explicit bindings. This usually involves deployment
of components in different capsules, creating local bindings between interfaces in different
capsules and creating low-level bindings between interfaces in different capsules. A factory
often uses other factories to create some of the contained components of the resulting
component.

Some standard factories are a part of OOPP. A component factory is provided to create
primitive components. A composite components factory is provided to create generic
composite components. In this case, the user have to specify the resulting composite
component completely with a component graph description, its interfaces and the other
factories (or classes) involved. Factories for the standard operational, signal and stream
bindings are also provided.

48 OOPP design issues

4.4 Meta-models

OOPP provides two of the meta-models discussed earlier: the encapsulation and the
composition meta-model. Each meta-model is accessed through meta-objects. A meta-
object can also have a meta-level. Theoretically this recursion of accessing meta-levels of
a meta-level can go on for ever. So rather than fixing the number of possible meta-levels
in OOPP, meta-objects are created on-demand when they are accessed. This allows for
an infinite number of meta-objects. In practice, this is of course never done. But the
possibility of accessing the meta-levels of a meta-object is an feature of OOPP. It makes
it possible to inspect and change the behaviour of a meta-object.

4.4.1 Encapsulation meta-model

The encapsulation meta-model provides access to the representation or the implement-
ation of components, interfaces and objects. The encapsulation meta-model of a given
interface, component or object is accessed through its encapsulation meta-object.

Components, interfaces and objects provide different meta-objects representing their en-
capsulation meta-models. The meta-models of objects are accessed using the standard
encapsulation meta-object for objects. The meta-objects of components and interfaces
provides more specialised interfaces based on their typical behaviour and characteristics.
It is also possible to use the standard encapsulation meta-object for objects to perform a
similar set operations on components and interfaces.

Encapsulation meta-model services for object

The encapsulation meta-objects for objects can be used

i) to inspect a given object (return a description of it),
ii) to manipulate its attributes,
iii) to manipulate its methods, and

iv) to completely change its implementation (class).

Inspection returns a description of the object including its class, attributes and methods.
This is useful both for the inspection of the implementation (methods provided, attributes
available and so on) and the current state of the object.

Methods can be added, overwritten, or deleted from the object. This is useful when a
smaller modification of a given object is necessary or useful.

To a given method of an object pre-, post- and wrap-methods can be added. A pre-method
of a method f is a method that is called before f is invoked. A pre-method of f can access

4.4 Meta-models 49

and change the arguments of f. A post-method of f is a method that is called after f
returns but before the result is returned to the caller. A post-method of f can access the
arguments and the return value of f. It can even change the return value. A wrap-method
of f wraps the invocation of f completely. A wrap-method of f has access to and can
change the arguments and the return value of f. A wrap-method of f can even ignore
to invoke f completely. Pre-, post- and wrap-methods have many potential usages. One
is to monitor method calls and their arguments and return values and possibly change
the arguments and return values in given circumstances. Another one is to guard and
synchronise method calls.

An implementation of a new method has to be supplied when a method is added or
overwritten in an object. This is also true for pre-, post- or wrap-methods when they are
added to methods of the object.

It is also possible to add methods that are called every time a given attribute of an object
is accessed or changed. Examples of the usage of these methods include the possibility to
change the value returned when an attribute is accessed (read) and to monitor the value
of an attribute when it is changed. Such a monitor could raise an alarm when a given
threshold value is reached. The programmer should be aware of the extra cost of accessing
and changing attributes of an object when such attribute methods are added.

Encapsulation meta-model services for interfaces

The encapsulation meta-object for interfaces can be used to

i) inspect a given interface (return a description of it),
ii) manipulate its exported and imported methods, and

iii) change the object the interface belongs to (are connected to).

Inspection returns a description of the interface including its exported methods, imported
methods, and the object it belongs to. The encapsulation meta-objects of interfaces dis-
tinguish between exported and imported methods. They provide services to add or delete
exported and imported methods in an interface.

Since an interface is a mapping to actual methods implemented in objects, an implement-
ation of methods are not supplied when methods are added to the exported or imported
methods of an interface. It is also possible to add pre-, post- and wrap-methods to methods
in an interface. In these circumstances an implementation of pre-, post- and wrap-methods
has to be supplied. Their implementation is similar to the pre-, post- and wrap-methods
of objects.

50 OOPP design issues

Figure 4.5 Different locations to add pre-, post- and wrap-methods.

Encapsulation meta-model services for components

The encapsulation meta-object of components is used to inspect, add, remove and replace
(external) interfaces of a component. The composition meta-model (see below) provides
the services needed to manipulate the component graph of a composite component.

Examples of the usage of the encapsulation meta-model

Figure 4.5 illustrates all the different locations where pre-, post-, and wrap-methods can
be added. The example contains an object a with a method f. Interface i exports method
f and interface j imports method f. Interface i and j are connected with a local binding.
The encapsulation meta-object e, for a can be used to add pre-, post- and wrap-methods
to f in object a (1 in Figure 4.5). The encapsulation meta-object e; for i can be used to
add pre-, post- and wrap-methods to the exported method f in interface i (2 in Figure
4.5). Finally, the encapsulation meta-object e; for j can be used to add pre-methods,
post-methods and wrap-methods to the imported method f in interface j (3 in Figure
4.5).

Given two interfaces i and j are bound with a local binding where interface i exports and
interface j imports the method f and g. Suppose a need to extend the interfaces with a
method h emerges. The encapsulation meta-object e; of interface 1 and the encapsulation
meta-object e; of interface j are fetched (created on demand). e; is then used to add
method h as an exported method of interface i. e; is used to add method h as an imported
method of interface j. Interface j can now be used to call the method h exported from
interface i. Notice that there were no need to break and then later rebind the local
binding between interface i and j. Also notice that the object connected to interface i
has to implement a method h (or this method has to be added using the encapsulation
meta-object of the object).

Suppose object s implements a stack with the size n. The attribute ¢ of object s is the
number of elements currently on the stack. A system needs to monitor the stack and send
a signal every time the stack is more than 90% full. The encapsulation meta-object es of
the stack s is fetched. e, is then used to add a method m to be called each time attribute
c of s is given a new value. Method m checks if ¢ > 0.9n and sends a signal if this is true.

4.4 Meta-models 51

Finally, suppose a profiling task needs to monitor every method call to an object 0. The
encapsulation meta-object e, is fetched and e, is used to get a list of every method in
object o. This list and the encapsulation meta-object e, is then used to add a post-method
p to every method in o. p forwards information about every method call to the profiling
object. The information forwarded typically includes the name of the method called, the
time of the call, all the arguments of the call, and the (optional) return value of the call.

4.4.2 Composition meta-model

Composite components typically represents complex binding objects. The adaptability
needed for multimedia applications in a mobile environment identifies a need to manipu-
late and restructure (change and extend) the component graph of composite components
during their life cycle. A composition meta-model is provided to achieve this.

The composition meta-model is empty for all non-composite components. It provides
access to the component graph representing the composite component. Every external
interface of the composite component and the composite component itself return the
same composition meta-object. The components found in the component graph of one
composite component are not necessary located in the same capsule.

The services provided by the composition meta-model are strongly influenced by the ser-
vices presented in the Adapt project? for the manipulation of object graphs of open bind-
ings [51].

Composition meta-object services
The composition meta-object can be used to

i) inspect the component graph,
ii) add and remove local bindings from the component graph, and

iii) insert, remove and replace components in the component graph.

Inspection returns a view of the component graph containing all components and all
bindings of the composite component. This view can be used to get access to specific
components or bindings, or to traverse the complete graph itself.

The composition meta-object can be used to create a new local binding between two
(internal) interfaces in the composite component. This new local binding is added to the
component graph. The composition meta-object can also be used to break existing local
bindings between two (internal) interfaces in the composite component. This local binding
is removed from the component graph.

The composite meta-object can be used to insert, remove and replace components con-
tained in a composite component. A new component inserted in the composite component

52 OOPP design issues

is added to the component graph. The new component is bound to existing interfaces in
the component graph as specified in the call. Existing bindings will be removed if any of
the existing interfaces already are bound to other interfaces. This service can for example
be used to insert a filter component in a low. A component removed from the composite
component is completely removed from the component graph. Any bindings between in-
terfaces of the removed component and interfaces of other components in the graph will
be removed too. Replace is a mixture of the two operations above. It removes an existing
component in the component graph and replaces it with a new one. Existing bindings to
the original component are removed and new bindings are created to the new one. The
new and the original component must be similar (including equal interfaces). The new
component inherits the role of the original component.

Examples of the usage of the composite meta-model

A news broadcast with video and audio is transmitted as an MPEG stream [37] from a
server to a laptop computer. When the laptop is disconnected from the high-bandwidth
local area network, a low-bandwidth wireless network automatically replaces it. The new
low-bandwidth connection is not feasible for the transmission of the MPEG video stream,
and the news broadcast client on the laptop that has observed the problems introduced
by the network replacement wants to filter out the video and only receive the audio. The
news broadcast server and client are bound with an MPEG stream object. This stream
object is a composite component containing a MPEG encoder, a sender object (on the
server side), a receiver object and an MPEG decoder (on the client side). The sender
and receiver objects are bound with an UDP/IP binding. The client uses the composition
function to fetch the composite meta-object of the stream binding. It then uses the insert
method of the meta-object to insert a filter object between the MPEG encoder object
and the sender object (on the server side). This filter object removes the video from the
MPEG stream, and only the (low data volume) audio will be transmitted to the client.

Another client of the news broadcast described above will first try lower the need of
bandwidth with a lower quality video. This client uses the composition function to fetch
the composite meta-object of the stream binding. It then uses the replace method of the
meta-object to replace the MPEG encoder with a H.263 encoder and the MPEG decoder
with a H.263 decoder [64].

Notes

1. The term “matching interfaces” used in this chapter is rather vague. A more precise
definition follows. Two interfaces i and j where interface 1 exports the set of methods
E; and imports the set of methods M; and interface j exports the set of methods E; and
imports the set of methods M;. Interface i and j match (denoted i < j) if the following
two conditions holds:

Vm; € My, de; € Ej,my C ¢ (4.1)

Notes 53

Vm; € Mj,de; € Ej,m; C e (4.2)

The meaning of an expression like f C g is that “the signature of (exported) method
g fulfils the signature of (imported) method f”. A simple approach only checks if the
method names of g and f are equal. A more refined approach could check if the type of
the arguments of method g and f match. This could be further extended with sub-typing
or compatibility rules [19, 48]. The expression i <j where i and j are interfaces should be
interpreted as equation (4.1) and the expression i j should be interpreted as equation
(4.2). This is a weaker demand on the relations between interfaces than i < j and it is
useful to check interfaces in one-way bindings (a binding where the only interest is in the
exported methods of one interface and the imported methods of the other interface).

2. One such an approach is the Z Object Publishing Environment (Zope, see http://www.
zope.org/). Zope is an object-based web application platform that provides direct URL
access to objects. The URL ‘/obj/meth?arg=val’ calls the method ‘meth’ of the object
‘obj’, and passes the argument ‘arg’ with the value ‘val’ to the method.

3. Adapt is a research project at the distributed multimedia research group in Lancaster.
The project is closely related to the Open-ORB project. The main aim of the Adapt
project is to investigate the development of distributed systems support to manage the
differing levels of connectivity a mobile user will experience. More specifically, Adapt is
investigating the required support for adaptive multimedia applications which are capable
of intelligently adapting to quality of service fluctuations. See http://www.comp.lancs.ac.
uk/computing/research/mpg/index _mods.html| for more details.

54

OOPP design issues

Chapter 5

OOPP implementation

A description of a prototype implementation of the Open-ORB architecture described in
chapter 3 now follows. The design issues of this prototype have been discussed in chapter
4. The motivations for this prototype is to validate the Open-ORB architecture and to
illustrate the utility of various adaptation mechanisms. The prototype implementation
should also provide an expressive programming model that supports the development of
distributed applications. This prototype will later be used to investigate the possibilities
to introduce an automata based quality of service management scheme (see chapter 6).

This reflective middleware platform prototype has been implemented in Python! [106,
76] on top of the socket interface of the TCP/IP and UDP/IP protocols. Python is an
object-oriented scripting language well suited for prototyping. The possibility to use the
interpreter interactively and test segments of the code individually is a great advantage
during the development of complex systems like OOPP. The language provides some
access to the implementation of its language constructs, like objects and classes. This
openness makes it easier to add reflective features needed in the OOPP programming
model. Python also provides a short development cycle from ideas to running code. This
was also considered a great advantage in the development of the prototype.

The Open-ORB prototype described here implements an RM-ODP [50, 60, 93] inspired
programming model with programming structures and their infrastructure. Reflection is
provided through the implementation of two distinct meta-models: the encapsulation and
the composition meta-model. The other two meta-models discussed in chapter 3 are not
implemented in this prototype.

Table 5.1 summaries the argument and return value types used in the following descrip-
tion (signatures) of the implementation. The OOPP implementation is split into several
modules. These modules are organised in three packages. The core package provides the
core programming model including the programming structures and their infrastructure.
The meta package provides the meta-programming model (the reflective features). Finally,
the mngt package provides the QoS management part (see Chapter 6).

55

56 OOPP implementation

Interface references

Explained in the text
Local binding control object Result value
Object instance Key or name

n Name server proxy

v

-

k
Component instances m Method name

f

a

w

I

g

An attribute value

Binding object Method implementation
Unique component identifier Argument tuple

Class or factory Argument dictionary
Capsule proxy Inspect dictionary
Encapsulation meta-objects Composition meta-objects
A list of x X x is optional

{k:x} Map (dictionary) from k to x (x,y) A two-tuple with x and y

*

RoT-B OEe o 0 —« xR e

A

Table 5.1 List of arguments and return values used in descriptions (signatures) in the following

text. Suffixes (like x; and x,) are used to distinguish between different values of equal type.

5.1 The programming structures

An application programmer uses the programming structures to build applications. As
described in the previous chapter, OOPP provides components, interfaces and bindings as
its basic programming structures. It also inherits the object and class terminology from
Python.

5.1.1 Interfaces and local bindings

An interface provides a set of exported and imported methods and it is connected (related)
to a given object. This is illustrated in the simple example from Figure 4.1 in the previous
chapter. An object a implements a method f and have an interface i. Method f is
available for other objects through interface 1 if interface i exports it. An object b has an
interface j that imports a method f. Object b uses interface j to call an external method
f implemented in an object with an interface that exports a method f. This other object
could be object a with interface i. Interface i and j are created with the basic interface
reference class IRef. Line 1 and 2 in Listing 5.1 (a) are the Python code used to create
them. The constructor of the IRef class will check that object a actually implements the
exported method f when the interface reference i is created. An exception is raised if this
is not the case.

It is important to observe that when two objects with matching interfaces as described
above have been created, there is no association between them until they are (explicitly)
bound to each other. The localBind function creates a local binding between two interfaces.
Line 3 in Listing 5.1 (a) creates a local binding between interface i and j. The localBind
function returns a local binding control object. This control object only has a limited
functionality in the current implementation. A local binding only exists as cross references

5.1 The programming structures 57

i = IRef(a, [""], [])

[

i = IRef(b, [, [") , breakBinding(i, j) 1
Ib = localBind(i, j) 3 Ib.breakBinding() 1
result = j.f() 4

(a) Create a local binding (b) Break a local binding

Listing 5.1 Create interfaces and a local binding and later break the local bindings.

between the two interfaces bound. The binding will not be broken if the local binding
control object is deleted or garbage collected. A one-way local binding is created with the
localBindOneWay function. It only connects the exported methods of argument one with
the imported methods of argument two (and not vice versa).

A breakBinding function is used to break (disconnect) a local binding. This is either done
directly on the interfaces using their interface references as arguments to the breakBinding
function (line 1 of listing 5.1 (b)) or with the breakBinding method of the local binding
control object (line 2 of listing 5.1 (b)). The programmer selects freely the most convenient
method to her own liking.

You can also reuse a local binding control object. The reBind and reBindOneWay methods
of the control object are used to create a new local binding in control of the existing local
binding control object.

Interfaces are accessed through interface references like i and j from Listing 5.1. An
interface reference also has a reference to an interface object. The creation of a local
binding populates the name space of the interface reference with forwarding methods for
its imported methods. These method calls are forwarded to the interface object of the
other interface. The name space of an interface object contains forwarding methods for
the exported methods of its interface. These forwarding methods forward the method
calls to the actual methods of the object. These forwarding methods are populated in
the interface object when the interface reference is created. An exception is raised if the
actual method does not exists in the object.

Figure 5.1 illustrates this for the local binding example used above. The interface of object
a is represented with the interface reference i and its interface object o;. The interface
object o; contains a forwarding method f,, to method f of object a. The interface of
object b is represented with the interface reference j and its interface object o;. Interface
reference j contains a forwarding method f; to the forwarding method f,, in interface
object o; when a local binding between i and j exists.

The perceptive reader has observed that the forwarding method f,, in interface object
0; is not necessarily needed in the implementation of a local binding. Since the interface
reference j and method f in object a are located in the same address space the forwarding
method f; in interface reference j could alternatively have a direct reference to method f

58 OOPP implementation

Figure 5.1 The implementation of a local binding between interface i and j where o; and o; are

the interface objects of interface i and j respectively.

-
[

src = StreamSrclRef(a) src = SigSrclRef(a)

sink = StreamSinkIRef(b) 2 sink = SigSinkIRef(b) 2

Ib = localBind(src, sink) 3 Ib = localBind(src, sink) 3

src.put(data) 4 src.event() 4
(a) Stream interfaces (b) Signal interfaces

Listing 5.2 The creation of stream and signal interfaces.

in object a. This approach would have reduced the level of indirection by one. However,
the possibility to have fine grained control over everything that happens on both sides of
the interface would be lost. A method call to method f in object a would not pass through
interface i (or more precisely, interface object o) at all.

As mentioned earlier, an interface can both export and import methods. It is, however,
possible for a programmer to choose a programming style where interfaces always either
export or import methods. Stream and signal interfaces follow this style. Two classes
CIRef and SIRef are provided to make it more convenient to choose this programming
style. These classes are a specialisation of the standard IRef class described above. They
represent the client and the server side in a traditional client-server setup. An interface
reference created with the CIRef class is similar to an interface reference created with the
IRef class when no exported methods are specified. An interface reference created with
the SIRef class is similar to an interface reference created with the IRef class when no
imported methods are specified.

The bindIRef function is just a combination of creating an interface reference and connect it
(with a local binding) to another interface. The first argument is the interface reference of
the interface that the new interface should be connected to. The second optional argument
is the object the new interface should be related with (possible none). Line 2 and 3 of
listing 5.1 (a) can be replaced by the statement ‘j = bindIRef(i, b)’ (the reference to the
local binding control object Ib would be lost).

Stream and signal interfaces exist in a source and a sink pair. They are a specialisation of
the operational interfaces presented above. A local binding between a source and a sink

5.1 The programming structures 59

IRef(0, [m]y,[m]2) — i Constructor of the IRef class. o is the object i is connected to
(possibly empty when i only imports methods). [m]; lists all the
exported methods of i. [m]; lists all the imported methods of 1.

CIRef(o,[m]) — 1 Constructor of the CIRef class. o is the object i is connected to.
[m] lists all the imported methods of i.

SIRef(o, [m]) — i Constructor of the SIRef class. o is the object i is connected to.
[m] lists all the exported methods of 1.

LBindCtrl(p,iq,1i2) — 1 Constructor of the LBindCtrl class. p is a reference to the cap-

sule of the binding (only used when the local binding is actually
created by a capsule). i; and i, are the interface references of
the two interfaces to be bound.

L.breakBinding() Break local binding controlled by 1.

LreBind(i1,12) Create a local binding between i; and i, controlled by 1.
L.reBindOneWay(i1, i2) Create a one-way local binding between i; and 1i.
localBind(iy,12) — 1 Create a local binding between i; and i,.
localBindOneWay(i1,12) — 1 Create a one-way local binding between 1; and 1i,.
breakBinding(i1,i2) Break local binding between i; and 1,.

bindIRef(i1,0*) — 13 This function creates interface i, as a matching interface for 1i;.

It then connects the two interfaces (with a local binding). The
optional argument o is the object the new interface should be
related with.

Table 5.2 Services available from the |bind module.

interface pair is also created with the localBind function. Listing 5.2 (a) contains the code
that creates a stream interface reference source and sink pair and makes a local binding
between them. The source interface belongs to object a and the sink interface belongs to
object b. A stream interface uses a put method with one data argument. Object b then
has to implement such a put method. A signal interface uses a method event without any
arguments to send a signal. One signal interface only supports one type of signals. Listing
5.2 (b) contains the code that creates a signal interface reference source and sink pair and
makes a local binding between them. In this example object b has to implement an event
method (with no arguments).

The standard interface references and the local binding function are implemented in the
Ibind module in the core package of OOPP. The services provided by the Ibind module are
listed in Table 5.2.

5.1.2 Components and composite components

Components are the main building blocks in OOPP. Listing 5.3 contains code that creates
two components a and b using the Component class. The first argument of the Component
constructor (inside { }) contains the mapping from the interface of the object (i and j) to
the interface of the component (a, and b;). The second argument is the contained object
(0o and oy). A local binding between interface a, of component a and interface b; of

60 OOPP implementation

a = Component({"ao": i}, oa) 1
b = Component({"bi": j}, ob) 2
Ib = localBind(a.interfaces["ao0"], b.interfaces["bi"]) 3

Listing 5.3 Create component a and b and a local binding.

: :Clo
a

a) Programmer’s view b) Implementation details
g

Figure 5.2 Two components a and b connected with a local binding.

component b is also created. Figure 5.2(a) illustrates this setup. Component a and b
are created with the existing objects o, and oy. These objects implements the methods
exported by the interfaces of the components and uses the methods imported by the
interfaces of the components. Component a and b wrap object o, and oy respectively.
Figure 5.2 (b) shows the implementation details of these components and local binding
between their interfaces.

A composite component contains a set of other components represented with a component
graph. Composite components can represent a complex structure of components as a single
component with a set of well defined external interfaces.

The component graph specifies the contained components and the local bindings between
the different internal interfaces of the contained components in the composite component.
A component contained in a composite component can again be a composite component.
This recursive component containment is terminated by primitive components (a com-
ponent that is not a composite component). The set of interfaces provided by a composite
component are a mapping from a subset of the interfaces of its contained components. This
implies that an interface provided by a composite component is a mapping to an interface
in one of the contained components. Figure 5.3 shows a simple composite component ¢
with two (external) interfaces c; and c,, two contained components a and b and only one

5.1 The programming structures 61

Figure 5.3 A composite component ¢ containing two components a and b.

¢ = Composite(1
{"Ci": (IIaII' IIaiII)' "CO"Z (Ilbll, "bO")}, 5
{"COmpS": {Ilall: a' IIbII: b}’ 3

IIiifII: {Ilaoll: (Ilall’ IIaOII)’ Ilbill: (Ilbll’ Ilbill)}’ 4
IIedgesll: [(Ilaoll’ IIbiII)]}) 5

Listing 5.4 Create the composite component from Figure 5.3.

local binding between interface a, and b; in the object graph. The external interface c;
is a mapping to interface a; of component a and the external interface c, is a mapping
to interface b, of component b. The generic Composite class can be used to create any
composite component. Listing 5.4 creates composite component ¢ from Figure 5.3. The
first argument (inside { }) specifies the external interfaces c; and c,. The second (and last)
argument specifies the contained components and their component graph. "comps" lists
and gives an internal name to all the contained components, "iif" list all internal interfaces
(given a name) and "edges" specifies the local bindings in the component graph using the
names from "iff". "iff" in this case indicates that the name "ao" will be used for interface
a, of component a and the name "bi" will be used for interface b; of component b.

Figure 5.4 exposes some of the implementation details of composite component c. The
contained components a and b of composite component ¢ contains object o, and oy
providing the implementation (code) of these components. Interface c; of component c is
a mapping to interface a; of component a. Interface a; of component a is a mapping to
interface a; of object o,. We have a similar mapping of the other external and internal
interfaces of composite component c.

The object graph is not directly exposed in Figure 5.4. It will contain the components a
and b, the list of internal interfaces a, and b;, and a mapping from the name of the local
bindings (edges) to the control object of each such binding.

A composite component can be distributed. A distributed composite component contains
components located in different address spaces (capsules). These address spaces can again
be located on different nodes. Components in different address spaces can be bound with
(non-local) bindings.

62 OOPP implementation

Figure 5.4 The implementation details of the composite component from Figure 5.3.

Table 5.3 summaries the services available from the component and composite module in
the core package of OOPP.

5.1.3 Bindings

Bindings provide connections (communication) between objects in different address spaces
and on different nodes. A typical binding is a distributed composite component containing
stubs and a lower level binding. Figure 4.3 in the previous chapter showed an example
of a binding object containing two stubs and a TCP/IP binding. OOPP provides three
different kinds of bindings.

An operational binding can be created with the constructor of the OpBinding class. How-
ever, it is expected that the application programmer will use the remoteBind factory since
its usage is simpler than the class constructor and similar to the localBind function. The
remoteBind function creates an operational binding using the OpBinding class. It then uses
this operational binding to connect (bind) the two given interfaces.

Listing 5.5 contains the code used to create an operational binding between interface i and
j and then call method f exported by interface i. Interface i and j belongs to two different
components located in different address spaces. Interface i is the remote interface and
interface j is the local interface in the code in Listing 5.5. The two interface references
used as arguments to the constructor of the OpBinding class are only used to provide the
location and signatures of the interfaces. This information is used to create stubs in the
right capsules and with the right signatures. The localBind functions has to be used later
to actually connect the two interfaces using the operational binding (see line 2 and 3 of
Listing 5.5 (a)). As mentioned above, the remoteBind factory combines these operations in
a single statement (see Listing 5.5 (b)). Notice that the remoteBind factory does not return
a component instance of the OpBinding class. The returned value is a unique identifier for
this component (see details in section 5.2.1 below).

5.1 The programming structures 63

Component({k:i},0) = ¢ Comnstructor of the Component class. The dic-
tionary {k : i} lists all the interfaces of c. Each k
is a internal name of an interface represented by
the interface reference i. o is the object imple-
menting the interfaces (or at least the exported
methods of the interfaces).

componentFactory([k], C,a*,w*) — ¢ The generic component factory. The list [k] lists
all the interfaces by their (internal) name. C is
the class (or factory) of the object implementing
these interfaces and a and w are the possible
arguments to the constructor/factory C.

Composite({k1 : (k2,k3)}{ka : x}) = ¢ Constructor of the Composite class. The dic-
tionary {k; : (k2,ks)} lists all the external in-
terfaces of c. Each external interface k; is a
mapping to an interface k3 of a contained com-
ponent k. In the {k4 : x} argument the follow-
ing keys (k4) with their related values should be
provided: "comps", "iif" and "edges".

compositeFactory({ks : (k2,k3)},{ksa : x}) = ¢ The generic composite component factory. The
description of the arguments matches the de-
scription of the arguments of the constructor of
the Composite class above.

c.interfaces A mapping to the interfaces of component c.

Table 5.3 Services available from the component and composite modules.

"ctrl"

—
-—

TCP/IP

"ifacel" "iface2"

TCP/IP

-
—

OpBinding

Capsule A

Capsule B

Figure 5.5 Implementation of binding object.

64 OOPP implementation

b = OpBinding(i, j) 1
la = localBind(i, b.interfaces["ifacel"]) 2 u = remoteBind(i, j) 1
Ib = localBind(b.interfaces["iface2"], j) 3 result = j.f() 2
result = j.f() 4

(a) Using OpBinding class (b) Using remoteBind factory

Listing 5.5 Creating and using an operational binding.

Figure 5.5 illustrates how the operational binding is implemented. Capsule A and capsule
B are two different address spaces. The operational binding is a composite component
containing two stub components (or just stubs for short). It provides three external
interfaces, one control interface "ctrl" and two connecting interfaces "ifacel" and "iface2"
(the names of these interfaces are given by the OpBinding class). The two stubs are
connected with two low level TCP/IP connections. One is for requests (method calls)
from an object in capsule A to an object in capsule B (with reply back to the object in
capsule A) and the other one is for requests from an object in capsule B to an object in
capsule A (also with reply). Similar to local bindings, the operational bindings are two-
way bindings (method calls can go in both directions). The m objects are message objects
(send request and receive reply) and the | objects are listen objects (receive request and
send reply). A message object is connected with a low level TCP/IP connection to a listen
object in the remote address space.

Two interfaces references i; and i, are used as arguments to the constructor of the Op-
Binding class. These interface references contain the following information used by the
constructor: (i) the location of interface i, (ii) the location of interface i, (iii) the expor-
ted and imported methods of interface iy, and (iv) the exported and imported methods of
interface 1,. The constructor uses this information to know where the stubs of the binding
should be created and what method calls it should provide (forward) in what direction. It
uses the encapsulation meta-model (see Section 5.3.1 below) of the stubs and its interfaces
to install forwarding methods for the exported and imported methods of the interfaces 1i;
and 1i,. It uses the services of the possibly remote capsules (see Section 5.2.1 below) to
create instances of the stubs at their given location.

A signal binding can be created with the constructor of the SigBinding class and a stream
binding can be created with the constructor of the StreamBinding class. However, the
corresponding factories sigBind and streamBind are easier to use and are expected to be
preferred by the application programmers.

Listing 5.6 contains the code used to create and use signal and stream bindings. The
arguments to the SigBinding and StreamBinding constructors are capsule proxies (or the
local capsule) used to locate the source and sink side of the bindings. The localBind
function is then later used to connect the source and sink interfaces through the binding
(see Listing 5.6 (a) and Listing 5.6 (c)). The sigBind and streamBind factories combine

5.1 The programming structures 65

b = SigBinding(pa, pb) 1
la = localBind(src, b.interfaces["src"]) 2 u = sigBind(src, sink) 1
Ib = localBind(b.interfaces["sink"], sink) 3 src.event() 2
src.event() 4
(a) Using SigBinding class (b) Using signal factory
b = StreamBinding(pa, pb) 1
la = localBind(src, b.interfaces["src"]) 2 u = streamBind(src, sink) 1
Ib = localBind(b.interfaces["sink"], sink) 3 while 1: 2
while 1: 4 src.put(getdata()) 3
src.put(getdata()) 5
(c) Using StreamBinding class (d) Using stream factory

Listing 5.6 Creating and using signal and stream bindings.

OpBinding(i1,12) = b Constructor of the OpBinding class. i; and i, are the interface
references of the two interfaces to be bound. This only creates the
binding. Interface iy and i, are not bound.

remoteBind(i1,12) — u Create a remote binding between interface i; and i,.

SigBinding(iq,12) — b Constructor of the SigBinding class. 1i; and i, are the interface
references of the two interfaces to be bound.

sigBind(i7,12) = u Create a signal binding between interface i; and 1i;.

StreamBinding(i1,12) = b Constructor of the StreamBinding class. i and 1, are the interface
references of the two interfaces to be bound.

streamBind(i1,12) - u Create a stream binding between interface i and 1i,.

b.serve() Make the binding ready for request.

b.stopserve() Make the binding unavailable.

b.start() Start the flow (stream binding).

b.stop() Stop the flow (stream binding).

b.interfaces Contains the interfaces of the binding b. An instance of the Op-
Binding class contains the interfaces "ifacel", "iface2" and "ctrl".

An instance of the SigBinding or StreamBinding class contains the

interfaces "src", "sink" and "ctrl".

Table 5.4 Services available from the different binding modules (opbind, sigbind and streambind
modules). The serve(), stopserve(), start() and stop() methods are available from the "ctrl" interface
of the bindings.

66 OOPP implementation

Capsule() — p Constructor of the Capsule class. Never used by the application pro-
grammer (automatically called when the capsule module is imported).

CapsuleProxy(k,v) = p Constructor of the CapsuleProxy class. The first argument (k) is its
node (host-name or IP-address) and the second argument (v) is its
listening port number.

equalCapsule(iq,i2) = v Check if interface i; and i, are located in the same capsule.

local Object exposing the services of the local capsule (an instance of the
Capsule class).

Table 5.5 Services available from the capsule module. See Table 5.6 for the services available from

a capsule and a capsule proxy.

these operations in a single statement (see Listing 5.6 (b) and Listing 5.6 (d)).

The implementation details of the signal and stream bindings are similar but simpler
compared to the generic operational binding presented above. The signal binding only
has one pair of the message and listen objects (m and lin Figure 5.5) and only one TCP/IP
connection. The main interfaces of the binding are called "src" and "sink" and not "ifacel"
and "iface2". The stubs of a signal binding are a source stub on the source side and a sink
stub on the sink side. The stubs of a stream binding are also a source and a sink pair.
The source side contains a flow source connected to the sink side flow sink with a UDP/IP
connection. This simple stream binding does not contain any buffers or knowledge about
time (buffering and knowledge of time are usually important for satisfying transfer of
continuous media over a stream binding).

Table 5.4 lists the services provided from the opbind, sigbind and streambind modules in
the core package of OOPP.

5.2 The infrastructure

A component becomes a part of OOPP infrastructure when it is located in a capsule.
The infrastructure provides different services for its components. These services include
life-cycle functions, naming and low-level interaction.

5.2.1 Capsule

A capsule is a managed address space providing a set of services for local and remote
components. Local components access the capsule services through the local object of the
capsule module. Remote components access the capsule services through a capsule prozy.

A capsule proxy can only be used to access a remote capsule if the remote capsule has
started its serving loop. This has to be done explicitly with the serve method locally. This
means that any capsule is unavailable remotely until the serving loop has been started.
The stopserve method is used to stop the serving loop.

5.2 The infrastructure 67

p.serve() Start serving requests from remote components

p.stopserve() Stop serving requests from remote components

p.registerComponent(c) — u Register component c in capsule.

p.getlRef(u, k) — 1 Get interface reference with key k from component u.

p.mkComponent(C, a*,w*) - u Create and register a component with class or factory C
using arguments a or w.

p.delComponent (1) Delete registered component u.

p.rcpComponent(u,p1) Make a copy of component u in capsule pj.

p.migrateComponet(u, p1) Move (migrate) component u to capsule pj.

p.callMethod(u, k, m, a*,w*) — r*

Call remote method m in interface k of component u with
arguments a or w.

p.announceMethod(u, k, m, a*,w*) Remote announcement (method call without reply).
p-announceThread(u, k, m, a*,w*) Remote announcement in separate thread.

p.sendMethod(u, k, m, a*, w*) - v Call remote method but do not wait for a reply.

p.recvMethod(v) — 1 Get reply from earlier sendMethod call. v is the handle
returned from the previous sendMethod call.

p.localBind(i1,12) — 1 Create a local binding between interface i; and 1i,.

p.-localBindOneWay(iq,1i2) — 1 Create a one-way local binding between interface i; and
iz.

p-breakBinding(i1,12) Break a local binding between interface i; and 1,.

Table 5.6 Services provided from capsules and capsule proxies.

Table 5.5 summaries the services available from the capsule module in the core package
OOPP. Table 5.6 lists services provided by capsules and capsule proxies. A component
has to be registered in the capsule to be available for the services provided. A component
¢ can be registered with the registerComponent method. A component created with the
mkComponent method of the capsule will automatically be registered in the capsule. The
mkComponent method has an argument C that is the class or factory used to actually
create the component and two optional arguments a and w used to pass the arguments
to the class constructor or the factory. Argument a is a tuple containing the arguments
and argument w is a key-word list version of the arguments (one or none is used). The
registerComponent and mkComponent methods return a local unique identifier u for the
component (unique in this capsule). This identifier together with a capsule proxy provides
a global identification of a component. The capsule also provides services to copy and
migrate a registered component.

The getIRef method of a capsule returns a global interface reference i of the interface named
k in the registered component u. Such interface references can be passed between different
capsules (for instance as arguments in a remote method call). The capsule also provides
services to establish and break local bindings in the capsule. These services are useful when
a local binding in a remote capsule has to be established or broken. The request is then
done through a capsule proxy. These methods have the same arguments as the functions
with the same names discussed in section 5.1.1. The localBind and breakBinding functions
presented in section 5.1.1 will use a capsule proxy to create a remote local binding when

68 OOPP implementation

[

import capsule 1
u = capsule.local.registerComponent(c) 2
i = capsule.local.getIRef(u,"i")

p = capsule.CapsuleProxy("00.no",1001)

u = p.mkComponent(C)

r = p.callMethod(u,"i","f",("x",2))
b = remoteBind(p.getIRef(u,"i"),j)
r = j.f("x",2) 4

w
w [M)

»

(a) Use capsule services (b) Call remote method f

Listing 5.7 Examples on the usage of capsule services.

they discover that the interfaces are located remotely.

Three different types of low-level invocations are available. A synchronous invocation sends
a message and receives a reply with the callMethod method. A asynchronous invocation
(also sometimes called a deferred synchronous invocation [49]) sends the message with the
sendMethod method and later picks up the reply with the recvMethod method. Announce-
ment can either be done with the announceMethod method or the announceThread method.
The announceMethod method sends the message but does not wait for a reply. The an-
nounceThread method starts a new thread to send the message. These low-level messages
are not meant for the application programmer. They are usually used by programmers
that are creating new types of bindings (classes or factories) or other supporting func-
tionality. The argument u in these message methods in Table 5.6 is the unique identifier
of the component. The identifier is unique in the context of its local capsule (a global
identification of the component is given combining this identifier and the capsule proxy
representing the local capsule of the component). Argument k is the name (key) of the
interface reference and argument m is the name of the method to be called. The last
two arguments a and w are two optional arguments used to pass arguments to the actual
method calls.

The capsule is created when the capsule module is loaded (imported first time). The local
attribute of the capsule module represents the local capsule. Notice that the programmer
should never use the constructor of the Capsule class. A capsule is automatically created
the first time the capsule module is imported. The programmer only creates capsule proxies
to get access to (remote) capsules.

Listing 5.7 (a) shows how the capsule is loaded (line 1), how component c is registered
in the local capsule (line 2), how a global interface reference for interface i in component
c is fetched (line 3), and how a capsule proxy p for a remote capsule at node "oo.no" is
created (line 4). The last argument of the CapsuleProxy constructor is the port number
the remote capsule is listening on. It will be shown later how to get access to a remote
capsule without this knowledge (see name server in section 5.2.2 below).

Listing 5.7 (b) illustrates how the capsule proxy p can be used. In the first line the
capsule proxy is used to create a component in the remote capsule. Method f exported
in interface i of this component is then called with the low-level callMethod call (line 2).

5.2 The infrastructure 69

NameServerProxy(k*,v*) = n Constructor of the NameServerProxy class. k is the node (default
is the local node) and v is the port number the name server is
listening on (default a standard port number).

n.exportCaps(k, p) Export capsule p with the key k.

n.exportlRef(k, 1) Export interface reference i with the key k.

n.delCaps(k) Remove the exported capsule with the key k.

n.dellRef(k) Remove the exported interface reference with the key k.

n.importCaps(k) — p Return a capsule proxy with the key k.

n.lookuplRef(k) — i Return the interface reference with the key k.

n.importIRef(k) — 1 Return an interface reference with an implicit binding to the
exported interface.

n.listCaps() — [p] List all exported capsules in this name server.

n.listIRefs() — [i] List all exported interface references in this name server.

Table 5.7 Services available from the nameserver module.

The listing then shows how f can be called through a remote operational binding (line 3
and 4, includes the creation of the binding).

The capsule is implemented as an Python process (address space) with one instance of
the Capsule class managing this process. This instance of the Capsule is locally available
through the local attribute of the capsule module. It implements a registry for its contained
(and registered) components and a serving loop for remote access. The serving loop is
implemented as a thread listing on a socket for incoming requests. One of the important
tasks of the capsule is to generate global interface references. This is done by populating
the interface reference with a capsule proxy representing itself (the capsule), the unique
identifier for the component providing the interface, and the name of the interface (in
the context of its component). An important feature of the serving loop is to catch
all exceptions raised by remote request and forward them back (with the appropriate
information) to the caller. This is important since uncatched exceptions in a remote
capsule will terminate its process without any feedback to the caller.

5.2.2 Name server

A naming service provides a way of getting access to remote interfaces based on an address
or a name. OOPP provides a simple naming service based on one or more name servers.

A name server is identified by a host identifier (IP address) and a port number and
it is accessed through a name server proxy. A name server proxy is created from the
NameServerProxy class when the host identifier and the (optional) port number are known.

Table 5.7 lists the services available from the nameserver module in the core package OOPP.
There is a clear distinction between capsules and other interfaces in the name server since
a capsule is not represented by an interface reference and the semantics of exports and
imports are different?

70 OOPP implementation

n = NameServerProxy(node,port) 1 n = NameServerProxy(node,port) 1

u = capsule.local.registerComponent(a) 2 j = n.importIRef("ai") 2

n.exportIRef("ai",capsule.local.getIRef(u,"i")) 3 result = j.f(10,2) 3
(a) Export interface reference i (b) Import interface reference i

Listing 5.8 Using a name server to export and import interface reference i (named "ai" in the
name server).

The exportCaps method registers the capsule p with the given name k in the name server.
An importCaps method using name k will return a capsule proxy for the registered capsule
if a capsule is registered using this name. Since an implicit binding now exists between
the capsule proxy and its capsule® the capsule proxy can immediately be used to access
its capsule.

The exportlRef method registers an interface reference i with the name k in the name
server. This simple name server does not have a name hierarchy. One name server spans
one name space for interfaces and one name space for capsules.

Two ways of importing an interface reference from the name server are available.

The lookuplRef method will return the interface reference of the given name. This interface
reference can not be used to access the methods of the interface directly. An interface-
lookup is usually used when an explicit binding later should be created to the exported
interface. An example is an audio source exporting its audio output interface. An audio
player (sink) with an audio input interface could look up (using the lookuplRef method of
a name server proxy) the audio output interface and later create an explicit audio-stream
binding between the audio output and the audio input interfaces. The audio-stream
binding could be a user-implemented binding meeting the special needs of audio transfers.
An lookuplRef method on the exported interface reference i of object a in Figure 4.1 will
return the interface reference i. Listing 5.11 uses lookuplRef and then creates an explicit
stream binding between the interfaces "src" and "i2".

The importIRef method will return an interface reference that matches the one exported.
An implicit binding between the returned interface and the interface represented by the
exported interface reference will automatically be created. The returned interface reference
can immediately be used to invoke methods in the exported interface (and vice versa). An
importIRef method on the exported interface i of object a in Figure 4.1 will return a new
interface reference like j. And implicit (remote) binding will be created between interface
iand j.

Listing 5.8 illustrates how interface i of component a is made available through a name
server represented by the name server proxy n and later imported from the same name
server. The implicit creation of a binding between interface i and j is hidden by the
importIRef method.

5.2 The infrastructure 71

NodeMngr() — o Constructor of the NodeMngr class.

NodeMngrProxy() — o Constructor of the NodeMngrProxy class.

o.ping() = k Check if the node manager is there.

o.stopserve() Terminate the node manager.

o.newport(k*) = v Return (reserve) a new port number v. k is an optional string.
o.delport(v) Release reserved port number v.

Table 5.8 Services available from the nodemngr module.

¢ = compositeFactory(1
{"Ci": (Ilall IIaiII) “CO“: (Ilbll Ilboll)} 5
{"comps": {"a": {"factory": componentFactory, 3

llargsll: ([Ilaill’ "30"], A)}’ 4
"b": {"factory": componentFactory, 5

[}

Ilargsll: ([Ilbill’ "bO"], B)}}’
Iliﬂ.'ll: {Ilaoll: (Ilall, Ilaoll)' Ilbill: (Ilbll’ Ilbill)},
Iledgesll: [(Ilaoll,llbill)]}) 8

Listing 5.9 Use the factory compositeFactory to create the composite component from Figure 5.3.

~

5.2.3 Node manager

The node manager manages resources shared by different capsules on one node. In
the current prototype this is TCP/IP and UDP/IP connection ports (port numbers). The
existence of the node manager is hidden from the application programmer. All interactions
with the node manager is done by the capsules. The capsule access the node manager
through a node manager proxy. The first capsule started on a node will start the node
manager when it discovers that the node manager is not there. The services provided from
the node manager module in the core package of OOPP are listed in Table 5.8.

5.2.4 Factories

Several factories have already been briefly introduced above. These factories include the
component factory, the generic composite component factory, and factories for different
explicit bindings.

Listing 5.9 shows how the generic compositeFactory can be used to create a composite com-
ponent similar to the one in Figure 5.3. The first argument specifies the external interfaces
c; and ¢, (named "ci" and "co" in the code) and the second argument specifies the com-
ponent graph. Component a and b are created with another factory (componentFactory)
using their classes A and B. The main difference between the constructor of the Compos-
ite class and the compositeFactory is when the containing components of the composite
component are created. A factory usually creates all the containing components while for

72 OOPP implementation

Stream binding

Figure 5.6 An audio source component s; in capsule A and an audio sink component s; in capsule

B connected with a stream binding.

instance the Composite class constructor creates a composite component using containing
components that already exists.

As seen in Listing 5.9 the syntax of the generic factory for composite components is com-
plex. The reason is that it has to contain a complete description of the new composite
component. The remoteBind, streamBind and sigBind functions presented above are ex-
amples of specialised factories with a simpler syntax.

5.2.5 Audio stream example

The example introduced here will evolve further in this and the following chapter as new
concepts are introduced. The example contains an audio stream between an audio source
and an audio sink.

Figure 5.6 gives an overview of the software architecture and the supporting infrastructure
of the audio stream example. An audio source component has two interfaces, an audio
output interface i; and a control interface cy. The control interface exports the methods
list, select, play and stop, and imports the method info. The audio output interface i; is
bound with a stream binding to an audio input interface i, of an audio sink component.
The audio sink component has two interfaces too. The first one is the audio input interface
i, and the second one is a control interface c,. The control interface imports the methods
list, select, play and stop, and exports the method info. The control interface of the audio
source is bound to the control interface of the audio sink with an implicit remote binding.

The list method provided by the audio source lists all the available audio sources. The
select method selects one audio source to be played. The play method starts transferring
the selected audio source from the audio source to the audio sink and the stop method
stops the transfer. The info method provided by the audio sink can be used by the audio
source to present information about the current (playing) audio source to its sink (typical
the name of current source).

The stream binding transfers the audio from the source to the sink. Listing 5.10 and
5.11 describe the process of establishing this setup. The code in Listing 5.10 is performed

5.3 Meta-objects 73

sl = capsule.local. mkComponent(AudioSource) 1
n = NameServerProxy(node, port) 2
n.exportIRef("ctrl", capsule.local.getlRef(s1, "c1"))
n.exportIRef("src", capsule.local.getlRef(s1, "i1"))

w

'S

Listing 5.10 Create the audio source s; in capsule A and export its interfaces. The audio sink is

created and bound to the audio source in Listing 5.11.

s2 = capsule.local. mkComponent(AudioSink) 1
n = NameServerProxy(node, port) 2
cl = ns.importlRef("ctrl") 3
il = ns.lookuplRef("src") 4

ot

sb = streamBind(il, capsule.local.getlRef(s2, "i2"))

Listing 5.11 Create the audio sink s; in capsule B, import the interfaces of the audio source and
create a stream binding between the stream interfaces of the source and the sink. The audio source
is created in Listing 5.10.

in capsule A and the code in Listing 5.11 is performed in capsule B. After these steps
are performed the sink component can (through its control interface) list, select, play and
stop the audio streams provided by the source component, and the source component
can (through its control interface) present information about the source to the sink with
the info method. The statement ‘cl.play()’ in capsule B starts transferring the currently
selected audio source from the source s; to the sink s;.

5.3 Meta-objects

The two meta-models provided by OOPP are implemented using encapsulation and com-
position meta-objects.

5.3.1 Encapsulation meta-objects

The encapsulation meta-model of a given object, interface or component is accessed
through its encapsulation meta-object. The encapsulation function is used to get ac-
cess to the encapsulation meta-object of an object, an interface or a component. The
encapsulation meta-model is implemented in the encaps module of the meta package of
OOPP.

Encapsulation meta-object services for objects

Table 5.9 lists the services provided by the encapsulation meta-object of objects. The
inspect method returns a description of the object. The description contains the class, the

74 OOPP implementation

encapsulation(o) — e Fetch the encapsulation meta-object of object o.
e.inspect() — I Returns a description of the object.

e.addMethod(m, f,v*) Add (or replace) method m with the implementation f.
e.delMethod(m, v*) Delete method m from the object.

e.addPreMethod(m, f) Add a pre-method f to method m.
e.delPreMethods(m, f) Delete pre-method f (or all) from method m.
e.addPostMethod(m, f) Add a post-method f to method m.
e.delPostMethods(m, f) Delete post-method f (or all) from method m.
e.addWrapMethod(m,f) Add a wrapper-method f to method m.
e.delWrapMethods(m, f) Delete wrapper-method f (or all) from method m.

e.addGetAttr(k, f) Add method f to be called when the value of attribute k is red.
e.delGetAttr(k, f) Delete the method f (or all) of attribute k added with addGetAttr.
e.addSetAttr(k, f) Add method f to be called when attribute k is given a new value.
e.delSetAttr(k, f) Delete the method f (or all) of attribute k added with addSetAttr.
e.changeClass(C) Change the class of the object to class C.

e.restore() Restore the object.

Table 5.9 Encapsulation meta-object services available for objects (encaps module).

def f(self): return "OK" 1 def p(self,w): print "m called" 1
e = encapsulation(o) def q(self,w): print w["result"]
e.addMethod("m", f) e = encapsulation(o)

)
N

w
w

e.addMethod("n", f, 1) 4 e.addPreMethod("m", p) a

e.delMethod("m") 5 e.addPostMethod("m", q) 5

e.delMethod("n", 1) 6 0.m() o
(a) Add and delete methods (b) Insert pre- and post-methods

Listing 5.12 Manipulate methods of an object.

attributes (attribute names), and the methods (method names) of the object.

Services used to add, replace and delete methods of an object are available. The addMethod
method is used to add and replace methods of an object. The delMethod method removes
methods from an object. In Listing 5.12 (a) a method named m with an implementation
f is added to object o using the encapsulation meta-object e (line 3). Method n of object
o is then replaced (overwritten) by a new method with the implementation f (line 4).
The last optional argument of addMethod forces the replacement. Otherwise an exception
would occur since method n already exists. Finally is method m and n removed from
object o (line 5 and 6). The optional last argument of delMethod (line 6) enforce the
complete deletion of method n. Otherwise, the old implementation of method n would
become available after the deletion.

A set of services to add and delete pre-, post-, and wrap-methods are provided. Listing

5.3 Meta-objects 75

5.12 (b) illustrates how a pre-method p and a post-method q is added to method m of
object o. Last line will call method m of object 0. Before the actual method is called the
message “m called” is printed (by pre-method p). After method m is called but before the
call returns, the return value of m is printed (by post-method q). The first argument self
of p and g is common with every method associated with an object. It is a reference to the
object itself (like this in C++ and Java). The second argument w is a dictionary (map)
containing information about the method call. This information includes a reference to
the object, the name (key) of the method, a reference to the method implementation, the
arguments of the method call, and a possible return value of the call (only available for
post-methods and wrapping-methods after the actual call).

It is also possible to add meta-methods that will be called when attributes are read or
modified. addGetAttr adds a meta-method to be called when the given attribute is read.
addSetAttr adds a meta-method to be called when the given attribute i modified (given
a new value). These added meta-methods can later be removed with delGetAttr and
delSetAttr respectively.

The changeClass method can be used to change the complete implementation of the object.
The object will become an instance of the new class. This service has to be used carefully
since the new class can contain a new implementation not consistent with the current
usage of the object. All instance attributes (the state) will be preserved. The common
usage of this service is to change the class of the object to a super- or sub-class of its
current class.

The last service listed in Table 5.9 will restore the object controlled by the encapsulation
meta-object. The meaning of this is that the encapsulation releases its control over the
object. In the current implementation all the implementation changes done on the ob-
ject would disappear. The only change that will survive is a change of the class. The
restore method will remove any overhead introduced in the usage of the object by the
encapsulation meta-object.

The trick to make this work is to make a copy of the original object (its state) and then
change the behaviour (implementation) of the original object. The original object becomes
a shadow object while the actual state of the object is saved and updated in the copy o..
Every access to the object now end up at the shadow object (the original object reference
still points at the original object but it has changed its behaviour and is now called the
shadow object). The meta-object controls the access to the object using this shadow
object. Every non-manipulated method call or attribute change are forwarded to o.. New
methods (or replacements) added with addMethod from the encapsulation meta-object
are installed in the shadow object with self referring to o.. This ensures that the new
methods are updating and accessing the state of the copy o.. Figure 5.7 (a) shows the
external (programmer’s) view of an object o and its encapsulation meta-object e. Figure
5.7 (b) exposes the implementation details (o is a reference referring to the object). When
the object is restored the shadow object are changed back to the class (implementation)
of the original object and its state is restored (copied from o).

76 OOPP implementation

(a) Programmer’s view (b) Implementation details

Figure 5.7 An object o and its encapsulation meta-object e.

def getx(self): 1 ei = encapsulation(i) 6

return self.x 2 ei.addEMethod("g") 7
e = encapsulation(a) 3 ej = encapsulation(j) 8
e.addMethod("g",getx) 4 EJ.add|Method("g") 0
print a.g() 5 print j.g() 10

Listing 5.13 Adding methods to objects and interfaces.

Encapsulation meta-object services for interfaces

Table 5.10 lists the services provided by the encapsulation meta-object of interfaces. The
inspect method returns a description of the interface. The description contains a reference
to the object the interface is connected to (possible none) and information about the
exported and imported methods.

The addEMethod and addIMethod methods are used to add an exported or an imported
method to the given interface. Only the name of the new methods are necessary. The
implementations should either be a part of an existing object or it should be added using
the encapsulation meta-object of the object. Listing 5.13 illustrates how a method g with
the implementation getx is added to object a, the exported methods of interface i and
the imported methods of interface j (see page 58, Figure 5.1 and Listing 5.1(a)). It is
not necessary to re-bind the local binding between i and j. Method g will automatically
become a part of this local binding.

Pre-, post- and wrap-methods can be added to exported and imported methods of inter-
faces too. In Figure 4.5 on page 50 these locations have the labels 2 and 3. Listing 5.14
illustrates how a post-method with the implementation inc is added to method f of object
a (line 11 and label 1), to exported method f of interface i (line 12 and label 2) and to
imported method f of interface j (line 13 and label 3). If method f of object a returns the
value 1, then the first print statement of Listing 5.14 (line 7) will print “1” and the second

5.3 Meta-objects 77

encapsulation(i) — e Fetch the encapsulation meta-object of interface i.

e.inspect() — I Returns a description of the interface.

e.addXMethod(m) Add a method with the name m to the exported or imported meth-
ods of the interface.

e.del X Method(m) Delete exported or imported method with the name m from the
interface.

e.addPreXMethod(m, f) Add a pre-method f to the exported or imported method with the
name m.

e.delPreXMethods(m, f) Delete pre-method f (or all) from the exported or imported method
with the name m.

e.addPostXMethod(m,f) Add a post-method f to the exported or imported method with the
name m.

e.delPostXMethods(m,f) Delete post-method f (or all) from the exported or imported
method with the name m.

e.addWrapXMethod(m,f) Add a wrap-method f to the exported or imported method with
the name m.

e.delWrapXMethods(m,f) Delete wrap-method f (or all) the from exported or imported
method with the name m.

e.changeObject(0) Change the object of the interface to object o.

e.restore() Restore the interface.

Table 5.10 Encapsulation meta-object services available for interfaces (encaps module). X should
be replaced by E for exported methods and | for imported methods.

(line 14) will print “1 2 3 4”. When method f is called using interface j the second time
(line 14), the return value will be printed and increased by 1 three times. The resulting
return value 4 is then finally printed.

The changeObject service can be used to change the object the interface is connected (re-
lated) to. The restore method will remove the encapsulation meta-object of the interface.

The implementation of the encapsulation meta-object for interfaces is much simpler than
the implementation of the encapsulation meta-object for objects. No shadow object is
needed and all manipulation is done directly on the interfaces them self. The main reason
for this is that the encapsulation meta-objects for interfaces have a limited scope. It is only
meant to manipulate interfaces and the interface classes are created with these operations
in mind. The encapsulation meta-objects for objects have to handle any instances of any
classes and not only a limited set of OOPP classes developed in the OOPP project.

New (forwarding) methods added to interfaces using the addMethod method of encap-
sulation meta-objects for interfaces are added directly to the interface reference and its
interface object (in the same way as these methods are added to the interface reference and
its interface object when an interface reference is created and an interface is bound). These
forwarding methods are implemented as a callable object. The result is that each forward-
ing method has its own state (storage). This is used to install (store) pre-, post- and wrap-
methods of the exported and imported methods when addPreXMethod, addPost XMethod
and addWrapXMethod methods of the encapsulation meta-object for interfaces are called.

78 OOPP implementation

def inc(self,m): 1 ea = encapsulation(a) 8
print m["result"], 2 ei = encapsulation(i) °
m["result"] += 1 3 ej = encapsulation(j) 10

'S

ea.addPostMethod("f",inc) u
IRef(a,["f"].[]) ei.addEPostMethod("f",inc) 12
j = bindIRef(i,b) ej.addIPostMethod("f",inc) 13

print j.f() 7 print j.f() 14

a = A() b= B()

ot

(o]

Listing 5.14 Adding post-methods to object methods and interfaces.

encapsulation(c) — e Fetch the encapsulation meta-object of component c.
e.inspect() — I Returns a description of the component.

e.addIF(k, 1) Add (or replace) interface k with the implementation 1.
e.dellF(k) Delete interface k from the object.

e.changeObject(02) — 01 Change the containing object 01 of the component to object 0.

e.replaceObject(02) — 01 Replace the contained object 07 and the interfaces of the component
with the new object 0, and its interfaces.

e.restore() Restore the component.

Table 5.11 Encapsulation meta-object services available for components (encaps module).

Encapsulation meta-object services for components

Table 5.11 lists the services provided by the encapsulation meta-object of components.
The inspect method returns a description of the component including its contained object
(or component graph) and interfaces.

The addIF and dellF methods are used to add and remove interfaces from the component.
The changeObject method actually replaces the contained object of the component. Be
aware that the interfaces of the component are not changed. This could be done manually
with addIF or by using replaceObject instead of changeObject. The replaceObject method
replaces the contained object and all the interfaces of the component. When using repla-
ceObject the new object has to contain interface reference attributes with names equal to
the names of the existing interfaces of the component. The new interfaces of component
will be the interfaces referred to by the interface reference attributes of the new object.

The contained objects o, and o, of components a and b from the example in Listing 5.3
on page 60 will be replaced with object o, and o4 respectively. In Listing 5.15 (a) object
04 is replaced with object o, using changeObject and addIF. In Listing 5.15 (b) object oy,
is replaced with object o4 using replaceObject. Be aware that the replacement in Listing
5.15 (b) only works if object o4 has an interface reference attribute similar to j with a
name equal to the name of the existing interface "bi" of the component.

The implementation of the encapsulation meta-objects for components are simply done

5.3 Meta-objects 79

ea = encapsulation(a) 1 eb = encapsulation(b) 1
ea.changeObject(oc) 2 eb.replaceObject(od) 2
ea.addIF("ao", oc.ao) 3

(a) Using changeObject (b) Using replaceObject

Listing 5.15 Replace the contained object and the interfaces of a component.

by accessing the attributes of the components directly. The attributes involved are the in-
terface dictionary (mapping) attribute and the object reference (reference to the contained
object).

5.3.2 Composition meta-object

The composition meta-object provides access to the component graph representing the
composite component.

A composition meta-object is created with the composition function applied on an inter-
face or a component. The returned composition meta-object can be used to expose and
manipulate the component graph. Table 5.12 lists the most common services available
from the composition meta-object [26].

Composition meta-object services

The inspect method returns a view of the component graph containing all components and
all bindings of the composite component. This view can be used to get access to specific
components or bindings, or to traverse the complete graph itself.

The bind method creates a new local binding between two interfaces in the component
graph. The break method removes (breaks) a local binding between two interfaces in the
component graph. These low-level methods manipulate the local bindings in the compon-
ent graph directly. The insert, remove and replace methods are manipulating components
and are expected to be used more often by the programmers.

The insert method inserts a new component in the component graph. The new component
is bound to existing interfaces in the component graph as specified in the call. Existing
bindings will be removed if any of the existing interfaces already are bound to other
interfaces. This service can be used to insert a filter component in a flow. The optional
argument specifies bindings to be established in the component graph. Such bindings are
specified as a mapping from an interface name in the new component (k; in Table 5.12)
to a name of an existing internal interface in the composite component (k3 in Table 5.12).

The addlIF method adds a new internal interface ("iif") to the composite component. Later
the bind method (see above) can be used to connect this interface to another internal

80 OOPP implementation

composition(c) — ¢ Fetch the composition meta-object of component c.
g.inspect() — I Inspect (view) the component graph.

g.bind(kq,k2) Connect interface k; and k; in the component graph.
g.break(k1,k2) Break connection between interface kq and k.

g.insert(kq,c,{k2 : k3}*) Insert (and bind) component c¢ using the name k¢ in the component
graph. The optional arguments specifies how the interfaces of the
new component should be bound.

g.addllF(kq, (k2,k3)) Add internal interface k3 from component named k;. The new in-
ternal interface are named k;.

g.remove(k) Remove the contained component named k from the component graph
(and from the composite component).

g.replace(cz) — ¢4 Replace component ¢y with component c,. All bindings to interfaces

of component c; is re-bound to interfaces of component c;.

Table 5.12 Services provided by the comps module.

interface.

The remove method removes a component completely. Any bindings between interfaces
of the removed component and other components in the graph will be removed.

The replace method is a mixture of the two operations above. It removes an existing
component in the component graph and replaces it with a new one. Existing bindings to
the original component are removed and new bindings are created to the new one. The
new and the original component must be similar (including equal interfaces). The new
component inherits the role of the original component.

The composition meta-object is implemented by accessing the composite component dir-
ectly. The composite component class has been implemented with this in mind. The
internal representation of the component graph of a composite component are made in
such a way that the composition meta-object services above can be implemented efficiently.

Examples of the usage of the composition meta-object

An example from Section 4.4.2 in Chapter 4 included an MPEG encoder and decoder
connected with stream binding s (see also Figure 5.8 (a)). The composition meta-object ¢
of s is fetched and used to insert a filter component f into the source side of the binding
(see Figure 5.8 (b)). Listing 5.16 (a) contains the code used to insert the filter. The f; and
fo interface of component f is automatically added to the internal interfaces of component
s (the binding) when the insert method is used like this. Listing 5.16 (b) illustrates how
this could be done manually (not using the optional argument to insert).

5.3.3 Audio stream example continued

This example started at page 72 in Section 5.2.5 above. We will now extend it by exposing
some of the meta-models in the example.

5.3 Meta-objects 81

src" "sink"
Uo Si

So Ui
}{i UDP/IP :}4

(a) Without filter

src" "sink"
So i i Uo Si

ﬁ<:§;ﬁz: UDP/IP :>{

(b) With filter f

Figure 5.8 Stream binding s with or without a filter component.

g.insert("f", f) 1
g = composition(c) 1 g.addIIF("fi", ("f","fi")) 2
ginsert("f", f, . gaddlF("fo", ("' "fo")) s
{"in:Nson Mol My} 3 g.bind("fi", "so") .
g bind("fo", "ui") s

(a) Using one insert statement (b) Manually connecting graph

Listing 5.16 Insert component f in the component graph.

The audio source s; produces a frame of audio samples in a timely manner. The size of
each frame is 3840 bits (or 480 byte). With a sample frequency at 16kHz and 8 bits per
sample each frame will contain 20ms of audio (50 frames per second).

The audio source component s; has a timed thread that is scheduled to produce a new
frame every 20ms. The audio sink s, plays an audio frame every time one is received at
the input interface. The stream binding is a composite component containing a source
stub my, a sink stub m,, and an UDP/IP binding between m; and m,. The source stub
m, transfers the audio frames received from the audio source as quickly as it can over the
UDP/IP binding to the sink stub m,. The sink stub forwards the audio frames to the
audio sink as soon as they arrive. Figure 5.9 illustrates this setup with the components
contained in the stream binding exposed. Figure 5.6 gives a complete view of the setup.

Audio is very sensitive to time. Each sample must be played exactly the given period of

82 OOPP implementation

Audio source Stream binding s Audio sink

Figure 5.9 An audio source and an audio sink bound with a stream binding.

e = encapsulation(s) 1
e.addIF("sink", b.interface["bo"]) 2
g = composition(s) 3
g.addlIF("mo", ("m2","sink")) 4
g.insert("b", b, {"bi":"mo"}) 5

Listing 5.17 Add a buffer component b to the stream binding s.

time after the previous one. This is difficult to achieve when the audio is transfered over
a network in small audio frames. The next frame must be available imitately after the
last sample in the current frame has been played. One way to achieve this is to always
have a set of pre-fetched frames available. We usually do not want to pre-fetch too many
audio frames, since this increases the latency (the time from the audio generated at the
source to it is played at the sink). A buffer component b is added to the stream binding
s to store and (timely) forward the pre-fetched audio frames to the audio sink. This
is done through the composition meta-object of the stream binding. The composition
meta-object g are used to insert the new buffer component b into the component graph
of s. The encapsulation meta-object e is used to change the external "sink" interface of s.
Listing 5.17 shows how this is done. Figure 5.10 illustrates the resulting system.

Notes

1. Python and information about Python is available from http://www.python.org/.

2. An implicit binding exists between a name server and a name server proxy. This
binding and other bindings between infrastructure components and their proxies are not
related to implicit bindings (binding objects) between interfaces represented by interface
references. The reason is that this sort of binding belongs to the infrastructure and is
used to implement programming structures (including higher-level bindings) provided to
the application programmers. They are lower-level building blocks and they can not be
build from programming structures they are partly implementing.

Notes 83

"SrC" "Sink"
Heore (e S
m % b

Stream binding s

Figure 5.10 Introducing a buffer component in the stream binding from Figure 5.9.

3. All proxies (capsule proxies, name server proxies and node manager proxies) use a
low level message protocol supporting announcements (a message without a reply), syn-
chronous messages (send a request and wait for the reply) and asynchronous messages
(send a request and pick up the reply later). An implicit binding based on this low level
message protocol exists between a proxy and the object it represents as soon as the proxy
is created. A binding process is not necessary before the proxy is used.

84

OOPP implementation

Chapter 6

Quality of service management

Management is the task of establishing and maintaining key-properties of a system. The
following will focus on dynamic quality of service (QoS) management. Dynamic QoS
management includes monitoring, adaption, re-negotiation, policing and maintenance
of QoS properties. Typical static QoS management functions are admission control,
QoS negotiation and resource reservation. The static QoS management functions will be
ignored in the following.

6.1 Management roles

The proposed management pattern consists of a set of management objects with different
roles. Several management objects can have the same role, but one management object can
also fill more than one role. The three different management roles monitoring, strategy
selecting and strategy activating have been identified. Figure 6.1 illustrate the different
roles in an adaptive producer-consumer setup. The distinct roles are selected to separate
conceptual different tasks in a management setup. Such separation of concern makes
it possible to separately develop, maintain and reuse different management tasks. A
description of the tasks of each role are described below.

6.1.1 Monitor

A management object with a monitoring role is simply called a monitor. A monitor is
used to collect information from the activities of components and objects in a running
system. It can perform some simple filtering of the collected information to highlight
interesting events and situations. It is also possible to have several levels of monitors
where the next level monitor collects information from lower level monitors. In a running
system without any observed problems (interesting events or situations) the monitors will
collect information without reporting it any further to other management objects.

85

86 Quality of service management

Encapsulation Resource
meta-object Stratergy Stratergy Stratergy meta-object
activator selector activator
\ I \]
\ 1 \ 1
\\ // Monitor \\ I/
\\ l/ \\ //

\ 1 \]

\ ! \ !
COHHC }QW@/
\ U \ !

Producer Binding Buffer Consumer

Figure 6.1 The different roles of management objects in an adaptive producer-consumer setup.

A monitor can either use services from the observed component or reflection to expose
activities related to a given component. For example, a buffer component can provide an
interface where the monitor can register for notification of buffer overflows. The monitor
will then receive a signal every time a buffer overflow occur. A buffer component that
does not provide the notification of overflow service can be monitored for overflows using
reflection.

For example, a buffer component b has an addltem method that adds a new item to its
buffer. First, the encapsulation meta-object e, of the buffer component is fetched using
the encapsulation function. Then, addPreMethod of e}, is used to add f as a pre-method
to the addltem method of the buffer component b. The f method check if the buffer is
full before the addltem method is performed, and sends a signal (to the monitor) if this is
true. This signal indicates that addltem will generate a buffer overflow.

The buffer component contains received requests that will be consumed (processed) by a
local process. It is acceptable to loose a request now and then in a buffer overflow since it
will be retransmitted after a given timeout. But it is not acceptable if we loose too many
requests to often. This indicates that the requests are consumed (processed) slower than
they are received and a solution is either faster processing or fewer (slower) requests. The
monitor receives ‘overflow’ signals each time an overflow occurs in the buffer component.
It keeps a counter c¢ of the number of received ‘overflow’ signals in a given period T. It
produces an ‘oto’ (overflow-to-often) signal if the counter ¢ exceeds a given level n during
a period T. This ‘oto’ signal is typically received by a management object with a strategy
selecting role.

6.1 Management roles 87

6.1.2 Strategy selector

A management object with a strategy selecting role is called a strategy selector. A strategy
selector receives interesting events from monitors and makes decisions based on that and
its internal state. Its internal state is influenced by previous received events and current
time. A decision can be to do nothing, to change its internal state, to set or reset timers,
or to send a signal to a selected receiver (or a combination of the last three).

A strategy selector waits for ‘oto’ (overflow-to-often) signals from the monitor described
above. When the first ‘oto’ signal is received the strategy selector produces a ‘ip’ (increase-
processing) signal. It then waits (ignores ‘oto’ signals) for a given period of time to be
assured that the system has stabilised with the increased processing power to the consumer
of the request. It continues like this every time it receives an ‘oto’ signal until a ‘mp’
(maximum-processing) signal is received. This signal indicates that it is not possible to
increase the processing power of the consumer any more, and a different strategy must be
selected. From now on every ‘oto’ signals will produce a ‘Irr’ (lower-request-rate) signal
followed by a given period of time when ‘oto’ signals are ignored. The intention of the ‘Irr’
signal is to instruct the producer of the requests to slow down.

6.1.3 Strategy activator

A management object with a strategy activating role is called a strategy activator. A
strategy activator is specialised to activate its given strategy. This may include the
process of deactivating the old strategy, building up the necessary structure (and infra-
structure) of the new strategy, and activating the new strategy. Strategy activators can do
anything from tweaking some attributes in a component in a running system to completely
remove an rebuild big chunks of the structure and infrastructure of a complete system.

The ‘ip’ (increase-processing) and ‘Irr’ (lower-request-rate) signal from the example above
are received by two different strategy activators.

The strategy activator P receiving ‘ip’ signals will instruct the consumer of the request to
speed up. This can be done by accessing the resource meta-model of the consumer com-
ponent. The resource meta-model can be used to increase the periodic time-slot available
to the thread processing the requests or increase the priority of the thread (depending
on the policies available). P will send a ‘mp’ (maximum-processing) signal back to the
strategy selector when it can not increase the processing power any further.

The strategy activator R receiving ‘Irr’ signals will instruct the producer of the requests to
slow down. It can do this by accessing the encapsulation meta-object e, of the producer.
The producer has a produce-request loop that forwards the requests to the buffer. This
loop includes the produceRequest method performing this action (including calling the
addltem method of the buffer b). R can use the addPreMethod service of e, to insert a
method s to be executed before the produceRequest method. The produceRequest method
delivers a request to the buffer component (over the binding). The pre-method s sleeps

88 Quality of service management

a given period of time before it returns. This will slow down the produce-request loop in
the producer.

6.2 Management objects

The nature of the different demands on the managements objects has resulted in two
different approaches in the realisation of them. The way monitors and strategy select-
ors behave is well suited to describe with an automaton, and especially with a timed
automaton. Therefore, the monitors and strategy selectors are realised as running timed
automata. The way strategy activators behave varies a lot. Some strategy activators only
tweak some arguments in an attribute of a component in the system, and some removes
and rebuilds almost the complete structure of a system. The approach used to realise
strategy activators strongly depends on its given tasks, and they can be anything from a
simple object to some sort of scripting languages. One common approach is to access one
or more of the meta-models of the components in a system and change the structure and
behaviour of the components involved.

6.2.1 Automata

As discussed in [32], timed automata [3, 4] have been shown to be useful for modelling
(management) systems. Automata are easy to understand and they have a large number
of validation and verification techniques associated with them. Also, a large number of
tools and simulators are available and can be used when their behaviour and properties
are to be understood. Timed automata are modelled with time related behaviour. This is
important in implementing QoS management functions. Such functions are often related
to time and time constraints.

Another nice thing with automata is that they fit the OOPP programming model very
well. An automaton can be wrapped as a component with its behaviour described in a
timed automaton description. Output and input signals are modelled as source and sink
signal interfaces, respectively. Such interface pairs are connected with signal bindings.

An automaton has a given set of states with edges (transitions) between them. One state
is called the initial state, and this is the state where the automaton starts (drawn with
two circles like state Sp in Figure 6.2). A state can have a guard. A guard is a conditional
expression that is either true or false. The automaton is not allowed to be in a state with
a false guard (it must change state). To change state is has to select an edge starting in
the current state. The new state of the automaton is the state where the selected edge
ends. If the state is changed because the current state has a false guard it has to select a
non-named edge (an edge not marked with an incoming signal like ‘overflow?’). The edges
can also contain guards. Only edges with true guards can be selected. If the automaton
receives an input signal (like ‘overflow’), an edge with its given name (and a true guard) is
selected. An edge can also contain an output signal (like ‘oto!’). The output signal is sent

6.2 Management objects 89

So

overflow?
c:=1,t:=0

oto!

Figure 6.2 The automaton description of the monitor M in the producer-consumer management
setup (Figure 6.1). The automaton receives ‘overflow’ signals and produces ‘oto’ (overflow-to-often)

signals. Value c is a counter, value t is a timer and values n and T are constants.

every time this edge is selected. In an automaton description (like the on in Figure 6.2),
incoming signals are marked with a question mark (like ‘overflow?’) and output signals
are marked with an exclamation mark (like ‘oto!’). Statements used to set the value of a
variable (counter) or a timer use the assignment operator =’ (like t := 0). Guards use
test operators to check if a guard is true or false. The following test operators are used:
‘=’ > ‘> ‘<’ and ‘<’. A false guard is specified with the number 0.

In the following, a simplified notation for automata is used. The reason is to not overload
the automata descriptions (make them more readable). The description of their behaviour
will be unambiguous if the interpretation described below is used. In standard automata
descriptions a non-labeled edge without a guard or with a true guard can be selected
even if the guard of the current state is true (or it is without a guard). However, in the
simplified notation used here, every non-labeled edge from a state with a guard has a guar