
Update Maps – A new Abstraction for High-Throughput Batch Processing

Steffen Viken Valvåg Dag Johansen
Department of Computer Science

University of Tromsø, Norway†

{steffenv, dag}@cs.uit.no

Abstract

Key/value databases are popular abstractions for ap-
plications that require synchronous single-key look-ups.
However, such databases invariably have a random I/O
access pattern, which is inefficient on traditional stor-
age media. To maximize throughput, an alternative is to
rely on asynchronous batch processing of requests. As
applications evolve, changing requirements with regard
to scale or load may thus lead to a redesign to increase
the use of batch processing. We present a new abstrac-
tion that we have found useful in making such transi-
tions: the update map. It aims to combine the conve-
nience of a key/value database with the performance of
a batch-oriented approach. The interface resembles that
of an ordinary key/value database, but its implementa-
tion can rely on batch processing and sequential I/O, for
improved throughput. We evaluate our new abstraction
by comparing three different implementations and their
performance trade-offs. Specifically, we identify some
conditions under which update maps significantly out-
perform commonly deployed key/value databases. Fi-
nally, we discuss ways to improve generic batch pro-
cessing systems like MapReduce as well as traditional
key/value databases based on our findings.

1 Introduction

A recurring question in system design is how to
store persisted state. Options include using a relational
database system, a simple key/value based look-up
database, or some application-specific storage scheme
built on top of a regular file system. From a perfor-
mance point of view, the right choice depends on the
expected access pattern of the application. Applications

†This work is supported in part by the Research Council of Norway
through the National Center for Research-based Innovation program.

that only do single-key look-ups, such as a simple direc-
tory service, will typically get better performance using
a key/value database than using a full-fledged relational
database. Many real-life services only require primary-
key access, as evidenced for example by Amazon’s Dy-
namo system [3] and its client services. Similarly, there
are applications for which a key/value database would
be overkill, such as a simple web server that only needs
to serve a static set of files.

The most common storage media are hard disks,
where large sequential I/O operations achieve signifi-
cantly higher bandwidth than small random-access op-
erations, given the mechanical nature of the disk head
movements involved. A common approach is thus to
accumulate storage requests and apply them in batches,
aiming to amortize the cost of random I/O accesses and
improve throughput. Taken to its extreme, the batch
processing approach employs nothing but append-only
files, without any supplementing index structures. A
batch of queries is processed by a simple sequential
traversal of the database. Updates are applied by re-
building a new version of the entire database, includ-
ing all updated values using a join algorithm such as
hash join [4] or sort-merge join [6]. With sufficiently
large batches, this can outperform the alternative of ap-
plying each update individually using a random-access
data structure.

Many applications are distributed by nature, or han-
dle data volumes that necessitate distributed process-
ing. In a distributed setting, the complexity of imple-
menting a hand-crafted storage solution can be discour-
aging, given the additional non-functional requirements
that distribution entails; e.g., fault tolerance and scala-
bility. One option is to use a high-level abstraction for
distributed data processing, such as the widely adopted
MapReduce [2] programming model. MapReduce ap-
plications have a map phase in which all input files
are read sequentially, producing intermediate key/value

pairs that are subsequently grouped by key and aggre-
gated in a reduce phase. How to produce the intermedi-
ate key/value pairs, and how to aggregate them, is con-
trolled by supplying user-defined map and reduce func-
tions; through appropriate choices a basic sort-merge
join algorithm can be implemented, for example to apply
batches of updates. MapReduce execution environments
typically include a distributed file system optimized for
high-throughput sequential I/O [5].

In this paper we focus on how to redesign I/O bound
applications from using a key/value database tailored
for fast synchronous look-ups, to using the throughput-
oriented batch processing approach. Such a transition
can be motivated for example by a change in require-
ments or deployment scale, resulting in increased re-
quest volumes. Based on our experience from redesign-
ing a real-life application, we present a new abstraction
for batch processing, the update map. It mimics the fa-
miliar interface of a key/value database, but is entirely
batch oriented, and can be implemented exclusively us-
ing sequential I/O. We present and evaluate three sepa-
rate implementations of update maps; one that uses the
MapReduce model for batch processing, a second hand-
crafted implementation, and a third reference implemen-
tation that is not batch-oriented, but instead relies on a
traditional key/value database.

The remainder of this paper is structured as follows.
Section 2 introduces the update map abstraction and its
interface. Section 3 provides an in-depth example show-
ing how a real-life web crawler application has been re-
structured for improved throughput using the abstrac-
tion. Section 4 describes our three implementations
of update maps and how they differ from each other.
Section 5 evaluates the implementations by comparing
the performance of batch-oriented update maps to tradi-
tional key/value databases for various batch sizes. We
discuss possible applications and adaptations of update
maps in Section 6, and conclude in Section 7.

2 Update Maps

The drawback of traditional key/value databases is
that they require random I/O accesses to handle syn-
chronous look-ups. Our idea is to provide an abstrac-
tion that only supports iteration over all items, as well
as asynchronous updates. With this restricted interface,
our implementation is able to rely solely on sequential
I/O and batch processing.

The basic interface of a key/value database is this:

Get(Key) ⇒ Value Synchronous look-up
Set(Key, Value) Synchronous overwrite

Keys can be mapped to values through the Set op-
eration, and the value associated with a key is retrieved
using the Get operation. Since the Set operation simply
overwrites the old value, updates such as incrementing
a value by one must be performed by 1) reading the old
value using the Get operation, 2) calculating the new
value and 3) writing back the new value using the Set

operation. Not only does this constitute a race condition,
it is also inefficient in terms of I/O and latency.

Our update map abstraction addresses this limita-
tion by introducing an Update operation that asyn-
chronously updates the value associated with a key, pos-
sibly as a function of the previous value. Rather than
directly specifying a new value, the Update operation
accepts an updater function which is used to determine
the new value. The updater function accepts the pre-
vious value associated with a key and returns the new
value. Note that the updater function can be evaluated
lazily, i.e. its evaluation can be deferred until the new
value is actually required.

Iteration is supported through the visitor pattern; the
Traverse operation accepts a visitor function which is
invoked once for each key/value pair in the database.
By design, there is no facility to synchronously look up
the value associated with a single key; a full traversal of
the database is required whenever values are to be read.
This allows implementations to collect batches of pend-
ing updates and apply them lazily at traversal time. For
a given application, the suitability of an update map thus
depends on the ratio of updates to traversals. The core
interface of update maps is summarized below.

Update(Key, Updater) Asynchronous update
Traverse(Visitor) Iteration

The following example illustrates the use of the
Update operation with various updater functions.

function two(key, value):
return 2

function increment(key, value):
return (value == null) ? 1 : value + 1

function remove(key, value):
return null

function multiply(key, value, factor):
return value * factor

Update(‘‘abc’’, two)
Update(‘‘abc’’, increment)
Update(‘‘abc’’, remove)
Update(‘‘x’’, bind(multiply, factor=3))
Update(‘‘y’’, bind(multiply, factor=7))

The first updater function always returns the value 2,
unconditionally overwriting any previous value associ-
ated with the key. The second function examines the
previous value and increments it by one. If the key had
no previously associated value, the special null value is
passed to the updater function, which in this case sets the
initial value to 1. By a similar convention, the third up-
dater function serves to remove a key from the database
by always returning null. The fourth updater function,
multiply, is more generic and accepts an additional
parameter whose value must be bound prior to invoking
Update. In our example, it is used first to multiply one
value by 3 and then another by 7. The value of the addi-
tional factor argument is specified using a hypotheti-
cal bind primitive. For functional languages, the natural
way to implement parameter binding would be through
partial function applications. For object-oriented lan-
guages, bound paramaters can be stored as fields in the
function objects.

These examples all ignored the key argument, so it
might seem superfluous. The main motivation for in-
cluding it is that it allows updater functions to double as
visitor functions, because they have the same type sig-
nature. When the Traverse operation is used to iterate
over all key/value pairs, the visitor function can return
a new value for each key that is visited, or remove the
key by returning null. The same functions can thus be
used as updaters to update the values associated with in-
dividual keys, or as visitors to update all values in the
database. The following example illustrates the use of
the Traverse operation.

function removeOdd(key, value):
if value mod 2 == 1:
value = null

return value

function show(key, value):
print key, value
return value

Traverse(increment)
Traverse(removeOdd)
Traverse(show)

This example first increments all values by 1, then
removes all keys with odd-numbered values, and finally
displays all remaining keys and values (assuming the ex-
istence of a print statement for displaying values).

process downloaded URLs
for url, status in downloads:
meta = Get(url)
if status != 200:
download error - retry later?
if meta.retries++ > maxRetries:
meta.status = gone

else:
meta.status = error

else:
download ok - parse links
meta.timestamp = now()
meta.status = ok
for link in parse(meta.content):
linkMeta = Get(link)
if linkMeta != null:
seen this URL before
linkMeta.linkCount++

else:
never saw it before
linkMeta = newMeta(link)

Set(link, linkMeta)
Set(url, meta)

schedule more URLs for download
for url, meta in database:
if meta.status = new:
if meta.linkCount > 3:
schedule(url)

else if meta.status in (ok, error):
if meta.timestamp < yesterday():
schedule(url)

Figure 1. Crawler main loop using a key/-
value database.

3 Example Application

The update map interface, whose simplicity allows
for very efficient implementations, might in return seem
overly restrictive for real life applications. We there-
fore present a more complete example in this section: a
large scale web crawler – the application that was our
original motivation for the update map abstraction. Web
crawlers download web pages and parse them to extract
hyperlinks to additional pages, which are again down-
loaded, forming a continuous work cycle. In many de-
ployments, the web crawler focuses on a narrowed sub-
set of the web, for example a single top-level domain,
and thus ignores many URLs. The original web crawler
was designed primarily for such use cases, with very
flexible policies for scheduling and filtering of URLs
to be downloaded. We needed to redesign it for larger
crawls; with the total number of available web pages on

function urlError(url, meta):
if meta.retries++ > maxRetries:
meta.status = gone

else:
meta.status = error

return meta

function urlOK(url, meta):
meta.timestamp = now()
meta.status = ok
for link in parse(meta.content):
Update(link, addLink)

return meta

function addLink(url, meta):
if meta != null:
meta.linkCount++

else:
meta = newMeta(url)

return meta

function scheduleURL(url, meta):
if meta.status = new:
if meta.linkCount > 3:
schedule(url)

else if meta.status in (ok, error):
if meta.timestamp < yesterday():
schedule(url)

return meta

for url, status in downloads:
if status != 200:
Update(url, urlError)

else:
Update(url, urlOK)

Traverse(scheduleURL)

Figure 2. Crawler main loop using an up-
date map.

the order of a trillion, throughput becomes the main con-
cern even when crawling narrow subsets.

The main bottleneck in the original crawler turned
out to be the key/value database used to store various
meta-data for each URL. Statistics such as the last down-
load time, the number of failed download attempts, and
the number of in-links encountered were being recorded
for each unique URL, which entailed enough random
I/O accesses to severely limit the overall throughput.

Figure 3 gives a somewhat simplified view of the
main loop of the original crawler: a separate download
engine manages a large set of concurrent downloads,
and the main loop iterates over the downloaded URLs
and their HTTP status codes. Failed downloads are re-

tried for a number of times before the URLs are flagged
as permanently missing. For successful downloads, a
time stamp is recorded and the downloaded content is
parsed for additional hyperlinks. For each link, the in-
link count of the target URL is incremented, or a new
meta-data entry is created if it is the first time the URL
is encountered. Finally, the database is traversed in or-
der to schedule additional URLs for download. In this
example, new URLs are scheduled for download if they
have been encountered in at least 3 links, while pre-
viously downloaded URLs are rescheduled for a new
download after 24 hours.

Once the set of encountered URLs grows sufficiently
large, the frequent meta-data look-ups of the crawler’s
main loop become a performance problem. The key
to optimizing the loop is realizing that the URL meta-
data is only ever updated as a function of its previous
value. Synchronous look-ups are not required; for exam-
ple, there is no need to synchronously read the previous
in-link count of a URL in order to increment it. How-
ever, we are hampered by the interface of the key/value
database, which forces us to do synchronous look-ups
in order to modify the meta-data. Figure 3 shows how
we overcame this in the new version of our crawler, by
rewriting the inner loop to use an update map with three
different updater functions and one visitor function. The
update map interface is thus sufficiently flexible for this
application; updates can be processed asynchronously
and new batches of URLs for the download engine can
be generated by an occasional traversal.

4 Implementation

We have developed two batch-oriented implementa-
tions of update maps. Our first implementation em-
ploys Hadoop, an open-source Java implementation of
the MapReduce programming model, designed for sim-
ple and efficient batch processing on large data sets. Our
second implementation, also in Java, is a hand-crafted
version that relies on a basic hash-merge algorithm to
apply batches of updates.

We also created a third reference implementation
based on the Java version of Oracle Berkeley DB
(OBDB), a widely deployed key/value database. OBDB
uses a B-* tree and employs a custom log-structured
storage for tree nodes. The storage is built on top
of the native file system and serves to minimize disk
seeks as new tree nodes are created. Nonetheless, look-
ups in the tree will inevitably cause random I/O ac-
cess patterns. The reference implementation is not
batch-oriented; it applies each Update synchronously,

key value

“abc” 23

“xyz” 45

key seqno updater

“abc” 1 λ(k, v) : v + 1

“xyz” 2 λ(k, v) : v/5

“abc” 3 λ(k, v) : v ∗ 2

⇓
key value

“abc” 48

“xyz” 9

Figure 3. Applying a batch of updates.

by looking up the previous value in the B-* tree, in-
voking the updater function, and writing back the new
value. The Traverse operation is implemented by iter-
ating over the database using its built-in iteration facili-
ties. We do not use OBDB transactions to apply updates
atomically.

Our two batch-oriented implementations are based on
the same core idea: implementing the Update operation
by appending the updates to a log, deferring their actual
evaluation until it is required by a Traverse operation.
With appropriate buffering this only incurs an occasional
burst of sequential I/O, which gives the Update oper-
ation a low amortized cost. The resulting log is a se-
quence of update records, each of which contains an up-
dater function, its bound parameters, the key to which
the update applies, and a sequence number. Updates to
the same key should be applied in order of increasing
sequence numbers. Since it may be practical or even
necessary to split the log into several files, we decided
to include the sequence numbers explicitly rather than
relying on file offsets for ordering of updates.

In addition to the update log, there is a set of files
containing data records, each of which contains a key
and its most recently computed value. To implement the
Traverse operation, all pending updates must first be
applied, by joining the update log with the set of data
records as illustrated by the example in Figure 3. The
figure displays updater functions using lambda notation.
There are two pending updates for the key ‘‘abc’’: In-
crementing its value by one, and multiplying the value
by two, in that order. The ‘‘xyz’’ key has one pend-
ing update: Dividing its value by five. The set of data
records is joined with the set of update records, produc-
ing a new set of data records; once this is done, the two
input sets can be discarded. Our two implementations

differ in how this join is implemented, and in the details
of how update and data records are stored.

Hadoop features a distributed file system, similar to
the Google File System [5], optimized for sequential ac-
cess and large files. Our Hadoop-based implementation
of update maps stores data records in one set of files,
and update records in another set. To perform the join,
all of the files are used as input to a MapReduce job,
whose map and reduce functions are shown in Figure 4.
Since the input will include both data records and up-
date records, the map function must handle both kinds.
Either way, all it does is emit the record unchanged.
The MapReduce framework then does the actual work of
grouping the records by key and proceeds to invoke the
specified reduce function once for each unique key. The
first argument to the reduce function is the key, and the
second argument is an iterator for all records having that
key. There is at most one data record for each key, which
holds the most recently computed value. The remaining
records are pending update records for the key. The up-
dates are sorted by sequence number and applied in turn.
Finally, the visitor function is invoked, as required by the
Traverse operation. Unless the final value is null, the
resulting key/value pair is emitted by the reducer func-
tion, and thus ends up in the new version of the database.

While our MapReduce-based implementation of up-
date maps is quite simple, it has some drawbacks. First
of all, MapReduce is not ideally suited for implement-
ing joins, as has also been noted elsewhere [10]. The
input to a MapReduce job must be modelled as a single
homogeneous set, so there is no concept of a left-hand
and right-hand side to facilitate a join. For each key, the
reduce function must consequently iterate over all input
records to locate the single data record that holds the
previous value. Meanwhile, the set of updates for the
key must be buffered and subsequently sorted. If there
is a large number of updates for a single key this could
even require external buffering and sorting.∗

Another problem is that of data partitioning. The
most expensive part of a MapReduce job is to group the
intermediate key/value pairs by key [2]. The framework
will process each input file sequentially and hash each
record key in order to group it. This is done both for
data records and update records, ensuring the updates for
a given key end up being processed by the same reduce
task as its current data record. Since our update map im-
plementation uses an identity map function that emits all
records unchanged, the only purpose of this initial pass
over the data is to group records correctly.

∗In practice, this does not occur in any of the experiments that we
used for evaluation.

function Map(record):
emit (record.key, record)

function Reduce(key, records, visitor):
value = null
updates = [] # empty list
for record in records:
if record is a data record:
value = record.value

else if record is an update record:
updates.add(record)

updates.sort() # by sequence numbers
for update in updates:
value = update.updater(key, value)

if value != null:
value = visitor(key, value)

if value != null:
emit (key, value)

Figure 4. MapReduce-based Implementa-
tion of Update Maps

Our second batch-oriented implementation, which
we will refer to as the Hash-Merge implementation, ad-
dresses the above problem by ensuring that all records
are grouped correctly at the time they are first written to
disk. The key space is hashed into a number of buckets,
and each bucket contains a separate file for data records,
as well as a separate update log. Update operations are
implemented by hashing the key to be updated, and ap-
pending an update record to the corresponding update
log. Data record files are maintained in sorted order.
To apply the updates in a given bucket, the update log
is sorted in-memory and the updates are merged with
the data records, reading the old data record file sequen-
tially while writing a new one sequentially. This proce-
dure can be applied separately for each bucket, when-
ever an update log is about to grow too large to fit in
main memory. When executing a Traverse operation,
each bucket can be processed in turn, so the main mem-
ory only needs to accomodate one update log at a time.

For larger data volumes, and regardless of the imple-
mentation on a single node, a distributed update map can
always be constructed as follows. The key space is parti-
tioned, for example using range partitioning or by hash-
ing keys, mapping each key to a partition. Each partition
is assigned to a separate node and implemented exactly
as a local (single-node) update map. Updates to a dis-
tributed update map are implemented by selecting the
partititon to which the key maps, dispatching the update
to the corresponding node, and applying the update to
the local update map of that node. Traversals are im-
plemented by traversing all local update maps in paral-

lel. Since this simple distribution scheme is applicable
for all implementations of single-node update maps, we
only focus on how to implement update maps locally
on a single node, and will evaluate our implementations
based on their single-node performance.

5 Performance Evaluation

In this section we compare the performance of our
three update map implementations and attempt to iden-
tify the circumstances, if any, under which each is
preferable to the others. The motivation for the update
map abstraction is to improve throughput for I/O-bound
applications by avoiding random accesses. By apply-
ing updates in batches, rebuilding the entire database for
each batch, only sequential I/O accesses are required.
In return, the data volume that is read or written is much
larger for a complete rebuild than using a random-access
data structure such as a B-* tree. As such, the rela-
tive performance of our implementations depends crit-
ically on the batch size, i.e. the number of Update op-
erations that are performed on average in between each
Traverse operation.

To compare our implementations we populated three
sample update maps (one instance of each implementa-
tion) with identical data sets. While synthetic, the data
set was constructed to mimic the meta-data that is main-
tained by a web crawler such as the one we described
in Section 3. It contains 42 million keys and values; the
keys are integers drawn from a key space of 100 mil-
lion, so when updates are applied to random keys, 42%
of them will on average update old values while the rest
will insert new values into the database. The values are
variable length, chosen randomly to be from 0 to 500
bytes long.

As described in Section 4, the on-disk data struc-
tures of our two batch-oriented implementations are
simple append-only files containing sequences of key/-
value pairs. For our sample database, this amounted to
about 11 GB of data on disk. In contrast, the same data
set had a footprint of about 24 GB when stored in an
OBDB database. The difference in footprint is unsur-
prising, since our batch-oriented implementations em-
ploy no auxiliary data structures, whereas the OBDB
implementation is based on a B-* tree, and needs addi-
tional space for node pointers. Furthermore, OBDB uses
a log structured storage for tree nodes which needs to be
compacted periodically to collect garbage and reclaim
disk space.

We used a machine with 8 GB of main memory and
two quad-core Intel Xeon E5335 2 GHz processors with

8 MB level 2 cache, running the CentOS 5 Linux distri-
bution, Java 1.6, version 3.3.74 of the Java OBDB, and
Hadoop version 0.18.1. Our experiments used a single
Java process that was limited to 2 GB in heap space, but
the remainder of main memory was available for disk
block caching.

Once our databases were initialized, we ran a se-
ries of experiments on each of them, applying a vary-
ing number of random updates. Each update appended
some random data to the value associated with a key, or
inserted a new value if the key was missing. The two
batch-oriented implementations process updates by ap-
pending them to a log, so in order to evaluate their true
amortized cost, we subsequently traversed the database
once to read all the new values. The workloads thus con-
sisted of a variable number of Update operations fol-
lowed by a single Traverse operation. In the OBDB
implementation all updates are applied synchronously,
so we omitted the traversal and did not include it in the
cost of processing the updates.

 200

 400

 600

 800

 1000

 1200

 0 100000 200000 300000

T
im

e
 i
n

 s
e
c
o
n
d
s

Number of updates (batch size)

MapReduce
Hash-Merge

OBDB

Figure 5. Time to apply a number of up-
dates to our sample database, for each of
the implementations.

Figure 5 shows the results, with the number of up-
dates applied on the X axis and the number of seconds
elapsed on the Y axis. The time required by the OBDB
implementation increases with the batch size, since each
update requires a look-up in the underlying B-* tree.
Main memory caching helps, but there is only room for
the topmost levels of the tree so the benefit is limited,
as shown by the near-linear increase in execution time.
In contrast, the time required for the Hash-Merge imple-
mentation is nearly constant, independent of batch size.
The only varying factor is the number of updates that

are logged, and their size on disk is small compared to
the total size of the database. The Traverse operation
will read and write the entire database, merging in the
updates. It is surprising how few updates are required
before the Hash-Merge implementation outperforms the
OBDB implementation. The crossover point, marked by
a vertical dashed line in the figure, is at around 66000
updates. In other words, if a mere 0.15% of the values
are to be updated in between each traversal, the Hash-
Merge implementation is preferable.

We were also surprised to see how poorly the
MapReduce-based implementation performed. Com-
pared to the Hash-Merge implementation we observed
a constant overhead of about 250%. This certainly
justifies hand-crafting the Hash-Merge implementation
rather than relying on the higher-level MapReduce
model implemented by Hadoop. The main advantages
of our hand-crafted version is the ability to do all sorting
in-memory, and to correctly partition the data when it is
first written to disk. The MapReduce-based implemen-
tation needs extra passes over the data for partitioning,
and may resort to external sorting.

6 Discussion

The update map abstraction takes batch processing to
the extreme. The fundamental premise of the abstraction
is to avoid random I/O accesses, to maximize through-
put. Our Hash-Merge implementation achieves this by
using append-only files which are only ever read sequen-
tially, while merging in updates. Still the update map in-
terface resembles that of a key/value database and aims
to ease the transition from using synchronous look-ups.
The web crawler example from Section 3 shows that
the restricted interface can be sufficiently expressive for
complex real-life applications.

Our approach of logging all updates and applying
them asynchronously has certain additional benefits, be-
sides performance. When the update log is flushed to
disk, updates are guaranteed to be persisted and visible
to future traversals. In other words, batches of updates
can be committed atomically without additional com-
plexity. Various semantics for concurrent updates can be
implemented, depending on how sequence numbers are
assigned; for example, they can be assigned by a central-
ized component, to implement a total ordering. In short,
the update logs serve not only to batch updates but also
as a potential write-ahead log.

Recent years have seen the emergence of several
batch-oriented programming models [1, 2, 7, 10], such
as MapReduce, and even higher-level abstractions, such

as Pig [8], that builds on top of MapReduce, and
Oivos [9], which compiles high-level declarative pro-
grams into low-level dataflow graphs. In these systems,
there is a central table abstraction which encapsulates
a data set, and tables are transformed using various op-
erators, supplemented by user-defined functions. Table
operations are generally executed using sequential I/O,
and multiple tables can be merged to implement joins.

In our experience, rewriting existing applications to
fit into one of these frameworks can pose a greater obsta-
cle than adapting to the semantics of an update map, for
applications that originally rely on key/value databases.
Table-oriented systems could address this by adding
support for asynchronous updates of individual records,
in additon to their existing operators, which transform
entire tables. The implementation would rely on the pre-
existing support for merging tables, and simply merge in
an update log whenever a table is read.

Another approach is to include an asynchronous
Update operation in the interface of a key/value
database. Pending updates could be buffered in memory
or stored in a separate B-* tree, to be applied in batches,
amortizing the cost of modifying the main tree structure.
While a number of clever implementations may be pos-
sible, the first step must be to offer the support for asyn-
chronous updates as part of the database interface (akin
to supporting SQL update statements).

7 Concluding Remarks

In this paper, we set out to explore the feasibil-
ity of restructuring real-life applications to rely exclu-
sively on sequential I/O, and the performance gains
that could result from doing so. Applications that rely
on synchronous look-ups in a key/value database ab-
straction would seemingly be hard pressed to make do
without random I/O accesses. However, many syn-
chronous look-ups can be rewritten as asynchronous up-
dates, paving the way for batch processing. The large
scale web crawler we have described exemplifies this,
as it was successfully rewritten to use our update map
abstraction.

The exact performance characteristics of an update
map depend on several factors, such as the size and dis-
position of keys and values, the hardware employed, and
not least the access pattern of the application. Intuitively,
a complete rebuild of the entire database for every batch
of updates seems prohibitively expensive. As such, we
were surprised to discover how few updates were re-
quired to justify it: for our example database, if a mere
0.15% of the items are to be updated, our batch pro-

cessing approach outperforms a conventional key/value
database. What appears to be brute force is actually a
powerful technique to improve application throughput.

Acknowledgements

We thank our colleagues in the iAD project, in partic-
ular Johannes Gehrke and Åge Kvalnes, for their helpful
input on earlier drafts of this paper.

References

[1] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou. Scope: easy and ef-
ficient parallel processing of massive data sets. PVLDB,
1(2):1265–1276, 2008.

[2] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In Proceedings of the 6th
Symposium on Operating System Design and Implemen-
tation, pages 137–150, 2004.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s
highly available key-value store. In Proceedings of the
21st ACM Symposium on Operating Systems Principles,
pages 205–220, 2007.

[4] D. J. DeWitt and R. H. Gerber. Multiprocessor hash-
based join algorithms. In Proceedings of 11th Interna-
tional Conference on Very Large Data Bases, pages 151–
164, 1985.

[5] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
file system. In Proceedings of the 19th ACM Symposium
on Operating Systems Principles, pages 29–43, 2003.

[6] G. Graefe. Sort-merge-join: An idea whose time has(h)
passed? In Proceedings of the Tenth International Con-
ference on Data Engineering, pages 406–417, 1994.

[7] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed data-parallel programs from sequen-
tial building blocks. In Proceedings of the 2007 EuroSys
Conference, pages 59–72, 2007.

[8] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: a not-so-foreign language
for data processing. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pages 1099–1110, 2008.

[9] S. V. Valvåg and D. Johansen. Oivos: Simple and ef-
ficient distributed data processing. In Proceedings of
the 10th IEEE International Conference on High Per-
formance Computing and Communications, 2008.

[10] H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker,
Jr. Map-Reduce-Merge: Simplified relational data pro-
cessing on large clusters. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pages 1029–1040, 2007.

