
Oivos: Simple and Efficient Distributed Data Processing∗

Steffen Viken Valvåg Dag Johansen
Department of Computer Science

University of Tromsø, Norway
{steffenv, dag}@cs.uit.no

Abstract

The complexity of implementing large scale dis-
tributed computations has motivated new program-
ming models. Google’s MapReduce model has gained
widespread use and aims to hide the complex details of
data partitioning and distribution, scheduling, synchro-
nization, and fault tolerance. However, our experiences
from the enterprise search business indicate that many
real-life applications must be implemented as a collec-
tion of related MapReduce programs. Since the execu-
tion of these programs must be monitored and coordi-
nated externally, several issues concerning scheduling,
synchronization, and fault tolerance resurface. To ad-
dress these limitations, we introduce Oivos; a high-level
declarative programming model and its underlying run-
time. We show how Oivos programs may specify com-
putations that span multiple heterogeneous and interde-
pendent data sets, how the programs are compiled and
optimized, and how our run-time orchestrates and mon-
itors their distributed execution. Our experimental eval-
uation reveals that Oivos programs do less I/O and ex-
ecute significantly faster than the equivalent sequences
of MapReduce passes.

1 Introduction

Search technologies are often taken for granted. For
the majority of Internet users, search services have al-
ways been ubiquitous, and frequently in the critical path
of their daily work. A search service usually has a de-
ceptively simple interface: a single input box where a
query is entered, and an ordered result page that is dis-

∗This work is supported in part by the Research Council of Norway
through the National Center for Research-based Innovation program.
Dag Johansen is also chief scientist at the enterprise search company
Fast Search & Transfer (http://fastsearch.com/)

played without any noticeable processing delay. From
this it seems natural to conclude that the underlying
functionality must be simple if not trivial. Few users re-
alize the paradox in being able to search through billions
of web documents in less time than it takes to download
any single one of them.

In reality, search engines constitute some of the most
complex distributed systems imaginable. Thousands if
not millions of users are served in parallel, accessing
huge data sets distributed across thousands of machines,
and the service remains available despite the inevitable
failures of individual software and hardware compo-
nents. Mastering this complexity is possible through
the contributions of hundreds to thousands of skilled en-
gineers and system administrators. A bird’s eye view
of a search engine reveals a complex set of distributed
computations. While queries are served in real-time
by look-ups in massively replicated index structures, a
whole portfolio of batch-oriented computations process
the vast data volumes downloaded from the web, trans-
forming and correlating data before it ends up in its final,
indexed form. Due to the sheer volume of data involved,
each of these computations must be distributed across
numerous machines.

As a reaction to this complexity, Google introduced
the MapReduce [3] programming model. MapReduce
programs are implemented in a succinct functional style,
and can process or generate huge data sets without con-
cern for the non-functional requirements of data par-
titioning and distribution, scheduling, synchronization,
and fault tolerance. This model has gained widespread
use, and several open-source implementations exist in
addition to the one developed by Google.†

In this paper, we identify several limitations with
the MapReduce programming model and present an en-

†For example, two available MapReduce implementations are
Hadoop (http://lucene.apache.org/hadoop/) and MapReduce on Cell
(http://sourceforge.net/projects/mapreduce-cell).

hancement that addresses these limitations. Our ap-
proach is based on hands-on experience from the en-
terprise search domain, where large corporations embed
search as an integral part of their enterprise platforms.
In this field, there is an increasingly apparent need for
powerful, high-level abstractions that facilitate the de-
velopment and deployment of distributed computations.

The rest of this paper is organized as follows. In Sec-
tion 2 we describe the MapReduce programming model
and its limitations. We then present the Oivos‡ pro-
gramming model and its benefits. Section 3 describes
the Oivos architecture, and details how high-level Oivos
programs are compiled into a low-level representation
suitable for its distributed run-time. Section 4 evalu-
ates the performance of the Oivos run-time, and makes
a quantitative comparison of the Oivos and MapReduce
programming models. In Section 5 we discuss Oivos in
a broader perspective, and its applications in other do-
mains. Section 6 concludes.

2 Programming Model

In this section, we describe the MapReduce program-
ming model and one of its derivatives. Then we describe
the Oivos programming model, and how it addresses
limitations experienced with MapReduce.

2.1 MapReduce

A MapReduce program processes a set of input
records, producing a set of output records. The program-
mer implements two functions: a mapper and a reducer.
The mapper is applied (potentially in parallel) to all in-
put records, producing a set of intermediate key/value
pairs for each input record. For each unique interme-
diate key, all values associated with that key are subse-
quently passed to the reducer, which produces the final
set of output records.

A MapReduce program thus transforms one homo-
geneous set of records into another homogeneous set
of records, using a number of map- and reduce tasks.
While this simple model suffices for several useful ap-
plications, it is cumbersome for relational data process-
ing, which often operates on multiple heterogeneous
data sets. This weakness was recognized by researchers
at Yahoo and UCLA, who proposed the Map-Reduce-
Merge model [10] that extends MapReduce to allow two
input sets of records, adding a merging phase after the
map- and reduce phases. This way, simple joins can

‡Derived from the Sami word oivoš, denoting the source of a river.

be implemented as a single Map-Reduce-Merge pass.
However, most practical applications still require a num-
ber of MapReduce or Map-Reduce-Merge passes to per-
form the desired computation. For example, Yang et
al. [10] give a join tree for Query 2 from the TPC-H
database benchmark that uses 13 Map-Reduce-Merge
passes. Google reports that their web indexing code uses
a sequence of 5 to 10 MapReduce passes [3], which dis-
counts the many MapReduce passes reportedly used for
related pre-processing of web documents.

When a large distributed computation is broken up
into a number of separate MapReduce passes, sev-
eral issues concerning scheduling, synchronization, and
fault tolerance resurface. Some process external to
the MapReduce implementation must monitor the sta-
tus and progress of passes, determining if and when to
re-execute a failed pass or start the next one. The pro-
grammer must also determine a valid execution order
for the MapReduce passes, considering that some of the
data might be out of date and need to be regenerated. In
the event of potential parallelism, arranging for multiple
passes to execute concurrently is another task left to the
programmer. Even if an optimal scheduling of passes is
achieved, a typical MapReduce implementation will in-
troduce a barrier synchronization point at the end of each
pass, requiring every reduce task in one pass to com-
plete before any of the map tasks in the next pass can
start. This restriction reduces the potential parallelism
in multi-pass MapReduce computations.

2.2 Oivos

As described in the previous section, the limitations
of MapReduce force the programmer to reconsider sev-
eral non-functional requirements when implementing
complex real-world computations.

Oivos addresses this concern by raising the abstrac-
tion level. A single Oivos program may specify what
amounts to numerous MapReduce passes, involving
multiple heterogeneous record sets. There is no need
to implement a computation as a collection of small
programs whose execution must be coordinated exter-
nally; a single program specifies everything, and once
it is passed to the run-time for execution it will run to
completion.

Additionally, Oivos offers very useful semantics sim-
ilar to those of a make program; in the event that a pre-
vious run was aborted, or that a subset of files have been
modified since the previous run, Oivos will automati-
cally determine which tasks must be re-executed by ex-
amining logical timestamps maintained by an underly-
ing distributed file system.

The primary abstraction in the Oivos programming
model is the table, which represents a homogeneous set
of records. Tables may either be declared as input tables,
or they may be derived by applying operators to other
tables. The table operators are generally parametrized
by user-specified functions and may thus be viewed as
higher-order functions that transform tables into new ta-
bles. Oivos programs are declarative, and do not spec-
ify an order of execution; they merely declare all tables,
some of which are derived from others. A program is
executed by specifying the set of desired output tables;
the Oivos run-time will automatically determine which
tasks to execute in order to produce those tables.

2.3 Examples

As an example problem domain, consider a web
graph manifested by a huge table of link records, each of
which contains a source and target URL. Such a data set
would typically be produced by a web crawler that logs
all hyperlinks encountered in the documents it down-
loads. Several practical applications rely on analysis
of web graphs to improve or add functionality to a web
search engine. Most notably, web graph analysis is often
integral to the ranking of search results, as evidenced for
example by Google’s PageRank algorithm [1].

One instance of web graph analysis is to compute the
number of in-links for each site in a web graph. Figure 1
shows a simple Oivos program to perform this computa-
tion. The program applies the map operator to map each
of the input Link records to a Site record that con-
tains the host name component of the link’s target URL,
and an in-link count of 1. All Site records with iden-
tical host names are then combined by summing their
respective in-link counts, using the combine operator.
The final line tells the run-time to produce the sites
table, which will contain one Site record per unique
host name.

Readers that are familiar with MapReduce will rec-
ognize that our first example could be implemented by a
single MapReduce program. To better illustrate the ben-
efits of the Oivos programming model, we now give an
example implementing a slightly more elaborate analy-
sis, in which the desired output is a site table that con-
tains the number of out-links as well as in-links for each
site. The analysis can be run on a recurring basis, each
time incorporating the links that have been discovered
since the previous run. This fits the real-world scenario
of a web crawler that continuously discovers new links;
periodically, a batch of links is processed and incorpo-
rated into the existing site table. A straightforward way
to compute such a site table is using four steps:

record Link:
String fromURL
String toURL

record Site:
String host
Integer inLinks

function Mapper(Link link):
emit Site(parseHost(link.toURL), 1)

function Combiner(Site a, Site b):
emit Site(a.host, a.inLinks + b.inLinks)

Table<Link> links = input(‘‘/mylinks’’)
Table<Site> tmpSites = links.map(Mapper)
Table<Site> sites = tmpSites.combine(Combiner)
sites.Produce()

Figure 1. Computing the number of in-
links for each site in a web graph.

1. Computing the number of in-links per site.

2. Computing the number of out-links per site.

3. Merging the output of the first two steps to produce
a single site table.

4. Merging the new site table with the previous ver-
sion of the site table to produce the desired output.

Figure 2 shows an Oivos program that implements the
above. Each of the above steps corresponds to one of
the four code lines indicated by a comment in the ex-
ample. A table containing the number of in-links per
site is declared by applying the map operator followed
by the combine operator to the table of links, as in
the first example. A table containing the number of out-
links per site is declared similarly; these two tables are
merged to produce an intermediate site table that con-
tains all the aggregated link counts; the intermediate site
table is merged with the previous version of the site ta-
ble to produce the output site table. Note that this pro-
gram does not specify an order of execution; it merely
declares the tables involved in the computation and how
they are derived from each other. When the final line
invokes Produce, the Oivos run-time is requested to
produce the site table, and will infer what needs to be
done (and in what order) based on the data dependen-
cies. In this particular case, it will recognize that steps 1
and 2 can be performed in parallel, a fact that might go
unnoticed by a casual programmer. A MapReduce im-
plementation of this example would require a separate
MapReduce program for each of the four steps; discov-
ering that steps 1 and 2 could run in parallel, and arrang-
ing for them to do so, would be up to the programmer.

For brevity, we presented these examples using
pseudo code. In reality, Oivos programs are imple-

record LinkCount:
String host
Integer count

record Site:
String host
Integer inLinks
Integer outLinks

function FromMapper(Link link):
emit LinkCount(parseHost(link.fromURL), 1)

function ToMapper(Link link):
emit LinkCount(parseHost(link.toURL), 1)

function Combiner(LinkCount a, LinkCount b):
emit LinkCount(a.host, a.count + b.count)

function Merger(LinkCount in, LinkCount out):
emit Site(in.host, in.count, out.count)

function SiteMerger(Site old, Site new):
emit Site(old.host,

old.inLinks + new.inLinks,
old.outLinks + new.outLinks)

Table<Site> oldSites = input(‘‘/sites’’)
Table<Link> links = input(‘‘/mylinks’’)
Table<LinkCount> inLinks, outLinks
Table<Site> newSites, sites

Steps 1, 2, 3 and 4:
inLinks = links.map(FromMapper).combine(Combiner)
outLinks = links.map(ToMapper).combine(Combiner)
newSites = inLinks.merge(outLinks, Merger)
sites = oldSites.merge(newSites, SiteMerger)

sites.Produce()

Figure 2. Computing the number of in- and
out-links for each site in a web graph.

mented in Java, using a library that offers the table ab-
straction. Tables are represented by objects created by
the library. To apply an operator to a table a method is
invoked on its table object; the return value is another
table object. Record types are implemented as regular
Java classes; functions that operate on records, such as
the mappers, combiners and mergers used in the preced-
ing examples, are regular Java methods that accept in-
stances of the record classes. Java’s generics feature is
used throughout to avoid any need for casting, and to
ensure type safety in the application of table operators.
Each table also has an associated key type, which must
implement Java’s Comparable interface; this defines
a total order on record keys. In practical terms, the key
of a table may be a record field, a combination of record
fields, or in general any value that may be derived deter-
ministically from a record. This flexibility is achieved
by specifying the key in terms of a user-defined key func-
tion that accepts a record and returns its key.

There are many advantages to specifying Oivos pro-
grams through a programmatic interface, as opposed to
inventing a new domain-specific language. Since there

is no limit to what a user-specified function such as
a mapper could potentially do, a domain-specific table
manipulation language would in reality have to include
most if not all facilities of a general-purpose program-
ming language. Our approach allows for seamless inte-
gration of Oivos programs with an existing code base.
Functionality like MD5 check-summing, URL parsing,
date formatting, etc. can be implemented simply by in-
voking the standard Java libraries. Another useful prop-
erty is that table objects fully encapsulate the specifica-
tion of how to produce a table; as such, they can be used
for lazy evaluation of tables. If an existing component
A implements the logic required to produce a table that
another component B needs, A can simply construct an
appropriate table object that specifies how to produce
the table, and pass the table object to B. If or when B
requires the table to be produced, it simply invokes the
Produce method on the table object.

2.4 Table Operators

In summary, Oivos programs declare tables that may
be transformed into other tables using table operators.
We now present the full set of table operators in Oivos,
and describe their exact semantics.

The Map operator applies a user-specified mapper
function to each record in a table. The mapper func-
tion may emit 0, 1, or multiple output records per input
record. The result is a new table containing all emitted
records. The record and key types of the output table
may differ from those of the input table.

The Sort operator sorts the records of a table accord-
ing to a user-specified key. This operator is applied im-
plicitly by other operators that require sorted input, and
may be applied explicitly as well. The result is a new
table with the same record type as the input table; the
key types of the input and output tables may differ.

The Reduce operator applies a user-specified reducer
function once per unique key in a table; the reducer func-
tion accepts a key and an iterator that can be used to iter-
ate over all records with that specific key. Like mapper
functions, reducer functions may emit a varying number
of output records; the result is a new table whose record
and key types may differ from the input table.

The Combine operator is used to combine all records
with equal keys into a single record. The user speci-
fies a combiner function that accepts two records and re-
turns one; it is repeatedly applied to pairs of records with
equal keys until a single record remains per unique key.
The combiner function must be associative and commu-
tative, such that the resulting record will be identical re-
gardless of the order in which the function is applied to

record pairs. Additionally it may not change the record
keys. The result of the combine operator is a new table
that has the same record and key types as the input ta-
ble, with exactly one record per unique key. This opera-
tor is similar to the family of higher-order fold functions
known from functional languages, except that it does not
imply a particular order of evaluation.

The Merge operator is a binary operator that merges
two sorted input tables with the same key type into one
new table§, applying a user-specified merger function
for each unique key. The merger function accepts two
records and may emit 0 or more output records. In the
case of keys that appear in both input tables, the argu-
ments to the merger function are one record from each
of the input tables. For keys that only appear in one of
the input tables, a null record is passed as the “miss-
ing” argument. The merger function may thus imple-
ment outer or inner joins as desired. The result is a new
table, whose record and key types may differ from those
of the input tables.

The table operators are inherently well-suited for par-
allel evaluation. This is because the user-specified func-
tions are either applied once per input record (e.g., map-
per functions) or once per unique key (e.g., reducer or
combiner functions). In the former case, the function
has no dependencies on other records and may thus be
evaluated in parallel for all records. Similarly, reducer
and combiner functions may be evaluated in parallel for
all unique keys. In practice, the actual degree of paral-
lelism to use is determined by the run-time as described
in Section 3.2.

Note that using the combine operator when possible
is generally preferable to using the reduce operator; this
is because reducer functions require a collection of all
records with equal keys in order to evaluate. In contrast,
a combiner function only requires a pair of records with
equal keys and may thus be evaluated earlier (using the
principle of upstream evaluation [2]). In short, the com-
bine operator is inherently more parallelizable than the
reduce operator.

3 Architecture

So far we have described how our high-level pro-
gramming model allows the specification of complex
distributed computations. Oivos programs need not re-
late to the details of how data and computations are dis-
tributed – this is handled automatically by the run-time.
We now explain the architecture of Oivos by introduc-
ing its individual components, and describe how these

§A series of binary merges can implement a multi-way merge.

components co-operate to ensure the efficient and fault-
tolerant execution of Oivos programs.

3.1 Components

The internals of Oivos can be broken up into the fol-
lowing three components:

Compiler. The compiler implements the logic for
compiling a high-level Oivos program into a set of tasks
that process individual files. Each task depends on a set
of input files that must be present before the task can
execute and produce a set of output files. The low-level
representation of an Oivos program is thus a precedence
graph of tasks and files.

Task Scheduler. The task scheduler is a distributed
system that provides an interface similar to a make pro-
gram; given a precedence graph such as the one pro-
duced by the compiler, and a set of desired output files,
it will execute any and all tasks needed to ensure that
the output files are up to date. Files are considered up to
date when they are more recent than all of their ances-
tors in the precedence graph. The task scheduler may be
servicing requests for multiple disjoint task sets concur-
rently, meaning that multiple unrelated Oivos programs
may be running in parallel. While the only abstractions
used in Oivos programs are tables and table operators,
the task scheduler knows nothing about these concepts
and only deals with files and tasks. This separation of
concerns is sound from an engineering point of view, as
it allows for independent and incremental improvements
to either the compiler or the task scheduler. It also im-
plies that the task scheduler can be used for precedence
graphs that are manually constructed or do not originate
from the Oivos compiler, a feature we have found to be
useful on occasion.

File System. The Oivos file system is a distributed
file system tailored for the limited requirements of Oivos
tasks. In particular, files may only be written sequen-
tially, and are immutable after their initial creation. Fur-
thermore, files may be concatenated in constant time;
data blocks are reference-counted and may appear in
multiple files, so concatenation is a pure meta-data oper-
ation. Files may be replicated to varying degrees; Oivos
programs may specify different replication degrees for
different tables. Since intermediate tables can be re-
produced based on their input tables, the most common
practice is to only replicate the initial input tables of
a computation. The file system also maintains logical
timestamps for all files, used by the task scheduler to
determine which files are up to date.

We collectively refer to the task scheduler and file
system as the Oivos run-time. The compiler is a part of

the Java library used to specify Oivos programs; it thus
executes at the client-side of the system.

We now give an overview of how the various compo-
nents in Oivos relate to each other by walking through
the actual sequence of events as an Oivos program is
compiled and executed. As noted, the high-level table
language is implemented by library code that runs in the
client process. The library allows the client program to
programmatically declare tables, which are represented
by table objects. Methods corresponding to the various
table operators may then be invoked on the table objects,
resulting in new table objects. None of this implies the
initiation of any form of I/O or distributed computation;
it is merely a specification of how the various tables are
to be produced. When the client program wants to pro-
duce a specific table, it invokes the Produce method
on the corresponding table object, which triggers the fol-
lowing sequence of events.

1. The library compiles the set of tasks required to
produce the table.

2. The resulting set of tasks is passed to the task
scheduler. The scheduler ensures that the relevant
tasks are executed in the correct causal order, i.e.
according to the precedence graph formed by the
tasks and their input file dependencies. The actual
execution of tasks is delegated to a set of worker
nodes managed by the scheduler.

3. The worker nodes execute the various tasks, pro-
cessing input files and producing output files that
all live in the shared file system. Each worker re-
ports back to the task scheduler once a task is com-
pleted, at which point the task scheduler typically
hands the worker another task to execute.

4. Once all tasks have completed, the task scheduler
informs the client program that the computation is
complete, and the client program resumes by re-
turning from the originating Produce invocation.
At this point, all the files that represent the table
exist in the shared file system. The table may sub-
sequently be used as input to other Oivos programs,
exported to some other component for further pro-
cessing, or both. A typical use case is to convert the
output table into a look-up structure to be served by
an on-line service, while also using it as an input ta-
ble in future off-line processing runs.

Oivos relies on re-execution as the primary strategy
for fault tolerance. If a worker fails while executing a
task, the task scheduler will simply reschedule the task

on another worker. If the task scheduler fails, a new
one will be started to replace it. This has the effect of
aborting all currently executing Oivos programs. Their
execution is automatically resumed from the client-side
by invoking the Produce method again; the new task
scheduler will examine the file system state and pick up
exactly where the old task scheduler left off.

Like the Google File System [4], the Oivos file sys-
tem uses a single master process to hold all meta-data
in memory. In the event of a failure, a new master
can quickly be brought on-line by replaying a meta-data
log that is replicated on multiple machines. File data is
stored on a set of data nodes; their failure will result in
transient or permanent data loss. The risk of losing crit-
ical data such as input tables may be reduced through
replication. Non-input tables will be reproduced from
their inputs even if all replicas are lost.

3.2 Compilation

We now outline how the high-level table language is
compiled into a set of tasks that may be executed by the
Oivos run-time. Each table is represented as a set of
files in the file system. The records of a table are parti-
tioned among the files by hashing the record keys. Each
record is thus stored in one (and only one) of the files,
and records with equal keys will always be stored in the
same file. The number of files used to represent a ta-
ble determines the maximum degree of parallelism when
applying operators to the table; we refer to this factor as
the split factor and it may be configured manually or au-
tomatically decided by the compiler.

A unary table operation (meaning the application of
an operator to a single table) is generally compiled into
one task per input file. If the output table has the same
key type as the input table, as well as the same split fac-
tor, we refer to the tables as compatibly partitioned. If
the operation also preserves record keys, each task can
directly output one of the files in the output table. Fig-
ure 3 shows the precedence graph for this simple case,
where the round nodes labeled “op” represent tasks, and
the square nodes represent files. The tasks simply read
their input files sequentially, applying a user-defined
function (such as a mapper) to each input record, ap-
pending the emitted records to the output file. As indi-
cated by the precedence graph, all of the tasks can exe-
cute in parallel.

When tables are incompatibly partitioned, or the op-
eration might modify record keys, a more complex com-
pilation procedure which we refer to as re-splitting is
required, since the records from each input file will be
scattered among the output files according to the new

Figure 3. A precedence graph for a unary
table operation where the input and output
tables both have 2 files and record keys
are preserved.

hash values of their keys. The need for re-splitting is
detected at compile time, and handled automatically as
follows. As before, a single task processes each input
file. However, the task outputs a set of N intermedi-
ate files, where N is the split factor of the output ta-
ble. As records are emitted they are appended to one of
the intermediate files; which file is determined by hash-
ing the record keys. If the input table has a split factor
of M , there will thus be M tasks that each produce N
intermediate files, for a total of M × N intermediate
files. The intermediate files are subsequently combined
to form the set of N files that represent the output table.
This is done by concatenating the first intermediate file
from each task to form the first output file, concatenating
the second intermediate file from each task to form the
second output file, and so on. As noted in Section 3.1,
the Oivos file system system supports constant-time con-
catenation of files, so the tasks that concatenate files do
not add any significant overhead. Figure 4 shows the re-
sulting precedence graph when the input table has 3 files
and the output table has 2 files.

Figure 4. A precedence graph for a unary
table operation where the input table has
3 files and the output table has 2 files.

Although re-splitting is performed without program-
mer intervention, it is an elaborate procedure that incurs

the I/O overhead of reading and writing the entire table
once more. As such, it should be avoided to the extent
possible. One way to minimize re-splitting is to use the
same split factor for all tables involved; hence, tables in-
herit the split factor of their input tables unless another
split factor is specified explicitly by the programmer.

We now explain how each individual operator is com-
piled. The map operator is compiled into a separate
map task for each file in the input table. Each map task
reads records sequentially from a file, applies the user-
specified mapper function to each input record, and out-
puts all records emitted by the mapper.

The sort operator requires the input table to be
partitioned according to the key by which the records
should be sorted. If this is not already the case, the table
is re-split as described above, using an identity mapper
function that outputs all input records unchanged (but
with the correct key). Once the table is correctly parti-
tioned, each input file is sorted independently by adding
a separate sort task per file. The sorted representation of
a table is thus the same as for an unsorted table, except
that each file is internally sorted according to the record
keys. Sort tasks will use an external sort if the file to be
sorted is too large to fit in memory; however, the split
factor is often sufficiently high to avoid this.

Sometimes a table is already in its sorted represen-
tation, even if this cannot be inferred by the compiler.
Consider the common case of a mapper function that
outputs records whose keys have the same sort order
as those of the input records (e.g., stemming of string
keys); if the input table happens to be sorted, the same
will then apply for the output table. However, a mapper
function is nothing but an opaque piece of Java code to
the compiler, and it cannot in general infer such proper-
ties. To address this problem, records are examined at
run-time whenever they are appended to a file, checking
if the records happen to be written in sorted order. If so,
the file is flagged as sorted, and if a subsequent sort task
attempts to sort the file it will recognize the flag and sim-
ply copy the file unchanged instead of sorting it again.
Since copying is merely a special case of concatenation,
it is also an inexpensive constant-time operation in our
file system, so this simple optimization can greatly re-
duce I/O load.

The reduce operator requires the input table to be
sorted; a sort operation is implicitly added by the com-
piler if the input table is not already sorted. The com-
piler then adds a separate reduce task per input file.
Each reduce task can read its input sequentially, since
equal-keyed records will be grouped next to each other
in a sorted file. The user-specified reducer function is

applied once per unique key encountered; the iterator
passed to the reducer will keep iterating over the input
records until the next key is encountered. The reduce
task outputs all records that are emitted by the reducer.

Merging two tables using the merge operator is ac-
complished by first ensuring they are compatibly parti-
tioned; if they are not, one of the input tables will be
re-split. Furthermore, both input tables must be sorted;
implicit sort operations will be added if this is not al-
ready the case. The tables are then merged by adding a
separate merge task for each pair of input files: One task
to process the first file of each input table, another to pro-
cess the second file of each input table, and so on. Since
the input tables are compatibly partitioned, equal keys
are guaranteed to occur in the same file in both input
tables. The merge tasks employ a standard merge algo-
rithm to merge their input records into a sorted sequence;
the user-specified merger function is applied once for
each unique key, as described in Section 2.4, and all
emitted records are outputted. If the merger function
does not change record keys, the output will thus be in
the sorted representation described above.

The combine operator is essentially a special case
of the reduce operator. However, a combiner function
may not change the keys of the input records (a restric-
tion enforced at run-time), so there is never a need to
re-split the table. The compiler thus adds a single re-
duce task for each file in the input table, using the prece-
dence graph in Figure 3. The reducer applied simply
iterates over all equal-keyed records, applying the com-
biner function to pairs of records until a single record
remains, which it appends to the output.

4 Performance Evaluation

In this section we evaluate the performance of Oivos
by subjecting it to real workloads. Since Oivos programs
are generally I/O intensive, an important metric to con-
sider is the amount of I/O performed. Furthermore, we
examine how throughput scales as a function of the num-
ber of machines employed and the size of the workload.

4.1 Experimental Setup

The experiments presented here are run on a clus-
ter of commodity workstation computers, managed by
the open-source Rocks Linux distribution for clusters.
There are 8 physical machines, equipped with two quad-
core Intel Xenon processors and 8 GB of RAM. Each
physical machine runs two Xen virtual machines, for a
total of 16 computing nodes.

The workload employed for these experiments is a
web graph analysis similar in nature to the one presented
in Section 2. It is extended to include HTML anchor
texts for each link, and assigns weights to links based
on a set of heuristics, some of which involve the IP ad-
dresses of the source and target hosts. An additional in-
put table is therefore a log of DNS look-ups. Further-
more, the analysis recognizes that multiple URLs may
be equivalent from a logical point of view, meaning they
serve the same content; such equivalent URLs may arise
for instance from HTTP redirections. The input to the
analysis is thus a table of equivalent URLs, a table of
links, and a table of DNS look-ups, all of which typ-
ically originate from a web crawler. The output table
lists an aggregated link score for each set of equivalent
URLs, indicative of its authority in the web graph, as
well as a set of popular anchor texts used to link to the
URLs. This output can be used to influence the ranking
of search results in a web search service. The analysis
is implemented in its entirety as a single Oivos program
that involves on the order of 20 tables.

For comparative purposes, we have developed an
alternative implementation of our web graph analysis
that stays within the confines of the MapReduce model.
Since the object is to compare the programming mod-
els, as opposed to their implementations, we implement
the MapReduce version of the analysis as another Oivos
program that only applies an alternating sequence of
map and reduce operators, such that each pair of map
and reduce operations corresponds to a single MapRe-
duce pass. If there is nothing useful for a given map or
reduce operation to do, we parametrize the operators
using identity functions that output all input records un-
changed, as is required by the MapReduce model. Since
this restriction turns out to be sufficient to demonstrate
significant performance improvements using our model,
we do not enforce barrier synchronization between each
MapReduce pass, nor do we prevent unrelated MapRe-
duce passes from executing in parallel. Enforcing these
inherent restrictions in the MapReduce model would fur-
ther disadvantage MapReduce when compared to Oivos.

While there are certainly several equivalent ways of
implementing a non-trivial computation like our web
graph analysis using MapReduce, a careful review of our
MapReduce version has not revealed any obvious way to
reduce the number of required passes. To the extent that
our Oivos version outperforms the MapReduce version,
it is due to the less restrictive programming model, as
opposed to ingenious programming.

4.2 Results

Our first experiment measures I/O usage by record-
ing the number of bytes read from or written to the file
system when executing our workloads on a sample data
set of 10 million links. The I/O usage is unaffected by
the split factor and the number of computing nodes used,
since a higher split factor simply means that the same
volume of data is partitioned into more files. The fol-
lowing table summarizes our findings; in total, MapRe-
duce does 48% more I/O than Oivos. This is due to the
superfluous identity map and reduce operations of the
MapReduce workload.

Reads Writes I/O %
Oivos 1.83 GB 1.39 GB 3.21 GB 100
MapReduce 2.54 GB 2.22 GB 4.76 GB 148

Our second set of experiments examines the relative
throughputs of our Oivos and MapReduce workloads,
for the same input as before. We define throughput as the
inverse of execution time, i.e. 1

time . We report through-
put measurements on a relative scale from 0 to 1, where
1 corresponds to the highest observed throughput.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16

Number of computing nodes

Oivos
MapReduce

Figure 5. Relative throughput for our
Oivos and MapReduce workloads.

One might expect throughput to scale linearly with
the number of computing nodes in a system – in real-
ity, this will only be the case for embarrassingly paral-
lel computations, and only if the effective aggregate I/O
bandwidth of the system scales linearly with the num-
ber of computing nodes. In the precedence graphs of
our compiled Oivos programs, there are multiple bar-
rier synchronization points. For example, consider the

precedence graph for re-splitting in Figure 4; all of the
“op” tasks must complete before any of the “concat”
tasks can proceed. At these junctions in the precedence
graph, some computing nodes must inevitably remain
idle for a period of time. This underlines the importance
of avoiding artificial barrier synchronization points such
as those introduced by the MapReduce model. In prac-
tice, any given workload will have a “sweet spot” with
regard to the number of computing nodes employed. For
instance, the throughput of our web graph analysis peaks
at 4 nodes when executed on 5 million input links. Fig-
ure 5 shows the relative throughputs for 10 million input
links: throughput peaks at 6 nodes, and eventually de-
grades below that achieved using only 3 nodes. MapRe-
duce throughput peaks at 69% of the Oivos throughput;
it other words, Oivos achieves a speedup of approxi-
mately 1.45 over MapReduce.

5 Discussion

Several new programming models [3, 5, 7, 8, 10]
have been introduced recently, all aiming to facilitate
the development of data-intensive distributed computa-
tions. Their common goal is to reduce or hide complex-
ity while maintaining good performance. At the core of
these models (although terminology may differ slightly)
we commonly find a set of idempotent tasks arranged
in a directed acyclic precedence graph. In the case of
MapReduce, the topology of the precedence graph is
fixed, and the programmer simply modifies the behav-
ior of certain tasks by plugging in user-defined mapper
and reducer functions. As noted, this has the draw-
back of requiring more complex precedence graphs to
be expressed in terms of multiple sub-graphs, each cor-
responding to one MapReduce pass.

In contrast, the Dryad [5] system from Microsoft Re-
search allows the construction of arbitrary precedence
graphs by embedding a graph manipulation language
into C++ using extensive operator overloading. While
the inflexible precedence graphs imposed by MapRe-
duce are indeed a problem, the approach of explicitly
constructing an appropriate precedence graph can be dif-
ficult for a novice programmer. By virtue of their declar-
ative style, Oivos programs only relate to the data de-
pendencies of a computation, which naturally give rise
to the underlying precedence graph through a fully au-
tomated compilation process.

Another way to improve flexibility and expressive-
ness is to build higher-level abstractions in layers on top
of MapReduce or similar infrastructures. For example,
DryadLINQ [6] compiles C# code into Dryad programs,

Sawzall [8] programs rely on MapReduce for execution,
and the high-level Pig Latin [7] language is compiled
into a collection of Hadoop MapReduce jobs. In general,
such layering can restrict the possible avenues of opti-
mization. As noted in Section 2.1, there are drawbacks
to subdividing a computation into discrete MapReduce
jobs, whether done manually or by a compiler.

Oivos improves upon the original MapReduce pro-
gramming model in two ways. First, our declarative
programming model is more expressive and allows the
specification of computations that span multiple related,
heterogeneous data sets. Not only does this reduce com-
plexity for developers – it also allows the elimination
of many barrier synchronization points and significantly
reduces the I/O load in typical workloads.

Second, we provide functionality similar to that of
a make program. Given some desired output, our run-
time will automatically infer what to do by examining
the state of the file system. If a previous processing run
was aborted for some reason, the run-time will ensure
that the next run picks up exactly where the previous one
left off. This functionality also paves the way for other
useful structuring techniques such as lazy evaluation of
tables.

While our positive experiences with Oivos stem from
the problem domains found in enterprise search plat-
forms, we expect to find useful applications of our pro-
gramming model in other domains as well. For example,
MapReduce was recently evaluated as a programming
model for multi-core and multi-processor systems [9],
and found suitable for application domains such as sci-
entific computing, artificial intelligence, and image pro-
cessing, in addition to enterprise computing. Since any
MapReduce computation can be expressed in Oivos, our
improvements do not sacrifice any generality.

6 Concluding Remarks

An emerging trend is that data volumes are growing
at a much higher rate than processing power. This is
a scaling problem in particular for providers of search
services, and large clusters of commodity computers are
a widely adopted and relatively cheap way to scale. It
is by no means trivial to program applications for such
distributed environments. A simple and inexpensive ap-
proach to scaling hardware can thus lead to a prolifera-
tion of highly complex distributed software.

To cope with the complexity hidden under the hood
of enterprise search services, we seek powerful high-
level abstractions. With Oivos, complex distributed data
processing can be expressed without concern for non-

functional requirements such as data distribution and
synchronization. The declarative nature of Oivos pro-
grams also obviates the need for explicit control flow.
Our run-time can automatically deploy, execute and
monitor computations and only requires high-level guid-
ance; given a simple specification of the desired output it
will infer how to produce it based on the current system
state. In conclusion, Oivos greatly reduces the program-
ming efforts required for high performance distributed
data processing.

Acknowledgements

We would like to thank our colleagues in the iAD
project, in particular Johannes Gehrke and Åge Kvalnes,
for helpful comments and discussions on earlier drafts of
this paper. We also salute the FDM team at Fast Search
& Transfer for the excellent and innovative work that
was our main inspiration.

References

[1] S. Brin and L. Page. The anatomy of a large-scale hyper-
textual web search engine. Computer Networks, 30(1-
7):107–117, 1998.

[2] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Achiev-
ing scalability and expressiveness in an internet-scale
event notification service. In PODC, pages 219–227,
2000.

[3] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI, pages 137–150,
2004.

[4] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google
file system. In SOSP, pages 29–43, 2003.

[5] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed data-parallel programs from sequen-
tial building blocks. In EuroSys, pages 59–72. ACM,
2007.

[6] Microsoft Research. DryadLINQ software.
http://research.microsoft.com/research/sv/dryadlinq.

[7] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: a not-so-foreign language for
data processing. In J. T.-L. Wang, editor, SIGMOD Con-
ference, pages 1099–1110. ACM, 2008.

[8] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. In-
terpreting the data: Parallel analysis with Sawzall. Sci-
entific Programming, 13(4):277–298, 2005.

[9] C. Ranger, R. Raghuraman, A. Penmetsa, G. R. Bradski,
and C. Kozyrakis. Evaluating MapReduce for multi-core
and multiprocessor systems. In HPCA, pages 13–24.
IEEE Computer Society, 2007.

[10] H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker, Jr.
Map-Reduce-Merge: Simplified relational data process-
ing on large clusters. In SIGMOD, pages 1029–1040,
2007.

