Distributed Event Stream Processing with
Non-deterministic Finite Automata’

Lars Brenna
University of Tromsg

larsb@cs.uit.no

Johannes Gehrke
Cornell University

johannes@cs.cornell.edu

Dag Johansen
University of Tromsg

dag@cs.uit.no

Mingsheng Hong
Cornell University
mshong@cs.cornell.edu

ABSTRACT

Efficient matching of incoming events to persistent queries is fun-
damental to event pattern matching, complex event processing, and
publish/subscribe systems. Recent processing engines based on
non-deterministic finite automata (NFAs) have demonstrated scala-
bility in the number of queries that can be efficiently executed on a
single machine. However, existing NFA based systems are limited
to processing events on a single machine. Consequently, their event
processing capacity cannot be increased by adding more machines.

In this paper, we present an experimental evaluation of different
methods for distributing an event processing system that is based on
NFAs across multiple machines in a cluster. Our results show that
careful input stream partitioning gives close to linear performance
scaleup for CPU bound workloads.

Categories and Subject Descriptors
H.2 [Database Management]: Systems—Query Processing

General Terms

Experimentation, design, performance

Keywords

Publish-subscribe, Continuous queries, NFA, Event streams

1. INTRODUCTION

Large-scale applications, such as e-commerce systems, search
engines, and stock exchanges create huge amounts of data which
must be analyzed with tight latency bounds. To match these la-
tency bounds, a powerful new system paradigm has emerged: Com-
plex Event Processing (CEP) systems that match incoming events
continuously against long-running queries that are registered with

*This work is supported in part by the Research Council of Norway
through the National Center for Research-based Innovation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DEBS’09, July 6-9, Nashville, TN, USA.

Copyright 2009 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

the system. One important processing model for CEP are non-
deterministic finite state automata that have been used in systems
such as Cayuga and SASE+ [2, 11]. These systems have shown that
the resulting query processing system can process complex event
pattern queries, but at the same time is highly scalable both with
the number of events and the number of queries. Both Cayuga and
SASE+ have shown single-node implementations that can deliver
an event throughput of tens of thousands of events per second.

However, in many applications the rate of incoming events can
be too high to be processed by a single node. For instance, the
NASDAQ stock exchange matching engine must routinely handle
over 125,000 messages per second [21]. Matching thousands of
complex queries at this rate is beyond the processing capacity of a
single machine with existing hardware technology. If the through-
put of the CEP system is lower than the rate of incoming events,
latency increases and the system will eventually run out of buffer
space. To improve throughput, the CEP must be distributed across
several machines.

Parallelization and distribution of NFA-based processing engines
have received little attention in earlier literature. Tanenbaum and
van Steen [27] discuss how NFAs can be decomposed into smaller
NFAs that communicate by sending intermediate events between
each other. This feature is called resubscription in Cayuga [11].
Resubscription leads to an architecture where components of an
NFA can run on separate nodes in a cluster. However, they con-
clude (without an experimental evaluation) that achieving both ex-
pressiveness and scalability is not feasible.

An approach leveraging programmable hardware is used to han-
dle extreme event rates in Gigascope [10, 18]. Query components
are installed on the network device for two purposes. One is to re-
duce the amount of events that reach the higher-level application
code. The second is to partition the input stream so it can be pro-
cessed in parallel using multiple machines. However, in a typical
shared, virtualized environment, we can not assume the availabil-
ity of programmable network devices. Thus, solutions leveraging
hardware are not an option.

In this paper, we perform an experimental evaluation of several
practical approaches to distributing NFAs. We perform our ex-
periments in the distributed event pattern matching system Johka,'
which is based on two open-source projects: the Cayuga system for
NFA-based event processing, and the multicast substrate Spread for
communication [5].

The rest of the paper is organized as follows. Section 2 gives
some background of NFA-based event processing systems, using
Cayuga as an example for our discussion. Section 3 discusses pos-

!Johka means big river in the Northern Sami language.

sible strategies for distributed stream processing and demonstrates
how NFA workloads can be parallelized and distributed. Section 4
describes the implementation of Johka, our prototype system. Sec-
tion 5 contains an experimental analysis of our prototype. Section
6 discusses related work, and we conclude in Section 7.

2. BACKGROUND:
THE CAYUGA SYSTEM

This section provides a brief overview of the Cayuga CEP sys-
tem. Most of this discussion follows previous work in [12].

2.1 The Cayuga Data and Query Models

Cayuga allows users to express event patterns in an SQL-like
query language called the Cayuga Event Language (CEL) [12]. It
is based on the Cayuga data model and query algebra, which are
explained in detail in [11]. Several unique features of the data
model lead to important design decisions in Cayuga. Like a tra-
ditional relational database system, Cayuga treats data as relational
tuples, referred to as events. However, Cayuga is designed to mon-
itor streams of events, not static relations. Thus, rather than sets of
tuples, the Cayuga data model consists of temporally ordered se-
quences of tuples, referred to as event streams. Each event stream
has a fixed relational schema. Each event in the stream has two
timestamps, the start timestamp, denoted as ¢o, and the end times-
tamp, denoted as t1. Together they represent a duration interval,
defined by t1 — to. Events are serialized in order of ¢1; for this rea-
son, ¢ is also referred to as the “detection time” of an event. Be-
cause of the semantic issues discussed in White et al. [28], Cayuga
considers events with the same detection time to be simultaneous,
and guarantees to produce the same result regardless of the order
of processing these simultaneous events. This guarantee is realized
through epoch-based processing in Cayuga.

The Cayuga algebra includes the unary operators of relational
algebra, such as selection, projection, and renaming, as these can all
be processed in a single epoch. It also includes union. However, for
two reasons it does not include Cartesian product or window join,
supported by full-fledged data stream processing systems. First,
they are difficult to implement efficiently in a stream setting with
a large number of queries. Second, they are less useful in their
natural form than more restricted forms of join. Cayuga algebra
instead introduces two restricted forms of join operators to permit
temporal correlation of events.

The first operator is the sequencing operator ;9. This operator is
a forward-looking join that combines a tuple with the “next” tuple
in the data stream that satisfies the filter predicate 6. For example, if
S1 and S are streams of stock quotes including a “name” attribute,
then S1;s, .name=S,.name 92 produces a stream of pairs, each pair
comprising a stock quote from S; and the next quote for the same
stock from S>. Here “next” is determined according to the first
epoch that contains a satisfying tuple. Tuples from S> that overlap
the S: tuple are not considered; however, there can be multiple
“next” tuples if they have simultaneous detection times.

To get more complex joins, Cayuga has the iteration operator
43,0, Where § is some composition of unary operators like selec-
tion or renaming. This operator is an iterated version of sequencing,
where § is used to define the duration of the iteration. This operator
allows users to express a large class of forward-looking joins.

2.2 Automaton Model

Demers et al. [11] showed that any left-associated Cayuga al-
gebra expression can be implemented by a variant of a nondeter-
ministic finite state automaton, referred to as a Cayuga automa-
ton. Non-left-associated expressions can be broken up into a set of

left-associated ones, and will therefore be implemented by a set of
corresponding Cayuga automata. Since CEL is based on Cayuga
algebra, these results are applicable to CEL queries as well. We
now describe how to process CEL queries with Cayuga automata.

Cayuga automata generalize on traditional NFAs in two ways:
(1) instead of a finite input alphabet they read arbitrary relational
streams, with state transitions controlled using predicates; and (2)
they can store data from the input stream, allowing selection predi-
cates to compare incoming events to previously encountered events.

Each automaton state is assigned a fixed relational schema, as
well as an input stream. All the out-going edges of a state read that
input stream. Each edge, say between states PP and @), is labeled by
apair (0, f), where 6 is a predicate over schema(P) X schema(.S);
and f, the schema map, is a partial function taking
schema(P) x schema(.S) into schema(Q). The Cayuga automata
operate as follows. Suppose an automaton instance is in state P
with stored data = (note x conforms to schema(P)). Let an event
e arrive on stream S such that 6(x, e) is satisfied. Then the ma-
chine non-deterministically transitions to state), and the stored
data becomes f(z,e).

Predicates in CEL formulations are translated into automaton
edge predicates in an obvious way. In particular, attribute deco-
rators in CEL are translated into prefixes e. or (). for a given au-
tomaton edge predicate, depending on whether the attribute comes
from the schema of the current event read by that edge, denoted as
e, or from the schema of the automaton state, denoted as @, from
which the edge originates.

Predicates in Cayuga automata are associated with edges. How-
ever, since there is always one filter edge for each state (except for
start and end states), we can associate predicates on filter edges
with automaton states without ambiguity. Similarly, since there
is at most one rebind edge for each state, associating rebind edge
predicates with automaton states is also not ambiguous.

Note that the predicate on a filter edge is the negation of the
corresponding filter predicate in CEL formulation. In the follow-
ing text, to avoid ambiguity, we avoid using the term filter edge
predicate. To be consistent with the notion of a filter predicate in
CEL formulations, in the context of automaton edge predicates, we
use the term filter predicate associated with state () to refer to the
negation of the predicate of the filter edge associated with Q. For
example, in Figure 1, the filter predicate associated with state ()1 is
@1.N = e.Name. Recall that we refer to the predicate on a rebind
(resp. forward) edge as its rebind (resp. forward) predicate.

Any Cayuga automaton maintains the following invariants on its
edge predicates:

e For any automaton instance I under state P, if the current
event together with I satisfy the predicate of a forward edge
from state P to (), then they must together satisfy the filter
predicate associated with state P.

e For any automaton instance I under state P, if the current
event together with I satisfy the predicate of a forward edge
from state P to @, then they must together satisfy the rebind
predicate associated with state P, if there is one.

e For any automaton instance I under state P, if the current
event together with [satisfy the rebind predicate associated
with state P, then they must together satisfy the filter predi-
cate associated with state P.

A consequence of these invariants is that for any automaton in-
stance I under state P, if the current event together with I do not
satisfy the filter predicate associated with state P, then none of the

$1.name =
$2.name

Name =
'IBM'

$1.price
>$2 price

$1.name =
$2.name

Name =
'MSFT'

$1.price
>$2 price

$1.name =

$2.name

Name =
'GOOG'

$1.price
>$2 price

Figure 1: Three query automata looking for stock events on
IBM, MSFT, and GOOG.

predicates on the rebind or forward edges associated with state P
will be satisfied. Therefore, the instance I must traverse the filter
edge of P and is unmodified (due to the identity schema map of
the filter edge). In this case, we say instance [is not affected by
the current event. Otherwise, if the current event together with [
satisty the filter predicate of P, we say [is affected by the current
event.

These invariants can be realized in the implementation by predi-
cate conjunctions. For example, the first invariant could be realized
by attaching the filter predicate of state P as a conjunct to the pred-
icate of each forward edge leaving P, and to the rebind predicate
associated with P, if there is one. With an understanding of these
invariants, to simplify the presentation, in the automaton figures
we usually do not duplicate filter predicates on forward or rebind
predicates.

2.3 Query Compilation

CEL queries are compiled to an intermediate XML format that
represents queries as state machines. The XML-formatted queries
are then loaded directly into the query engine data structures. Each
Cayuga query is represented as an automaton extending the clas-
sical non-deterministic finite automaton [17]. Every predicate is
mapped to an edge, and each new event can affect the state of the
automaton. An edge is traversed if an incoming event satisfies the
corresponding predicate. If no edges are traversed, the event is
dropped. This mechanism implements selection. When an event
traverses an edge, its values are evaluated by an identity function
corresponding to the schema of the destination state. The output
of the identity function is stored at the destination state as an in-
stance. This mechanism allows Cayuga to generate witness events
that contain data from all the events that caused the query automa-
ton to reach its end state. Figure 1 illustrates three NFA represen-
tations of queries for two consecutively increasing stock updates.

By exploiting the relationship of the query algebra to the auto-
mata-based query execution, and commonality among queries, Ca-
yuga can efficiently evaluate a large number of concurrent event
queries. First, Cayuga achieves sharing of both computation and
storage by merging all queries into a single NFA. Secondly, au-
tomaton edge predicates that are given a static parameter such as
{name = "IBM"} can be managed efficiently by indices in a way
similar to the techniques for processing multiple selection opera-

MO GOOO
LOOO

{ololelo

events

N

Source F—

queries >

Figure 2: The row/column approach to query processing.

tors [14]. In this case, Cayuga creates an index where the name
value is the key identifying all predicates that must be evaluated for
an event containing that value. This can be done when the query
is inserted. Predicates such as {$1.name = $2.name}, do not have
any static parameters to index, and must dynamically add a new in-
dex entry when an event arrives containing a new value for name.
The separation gives two classes of queries; those with dynamic
and those with static predicate indices. Dynamic predicate param-
eters are useful when the value space of the parameter is large or
unknown. If it is known, a dynamic query can be instantiated into
one static query per parameter in the value space.

2.4 Discussion

We conjecture that there are at least two categories of techniques
that can be applied to scale NFA-based event processing in a dis-
tributed system. Perhaps the most intuitive approach is to divide
the queries in Figure 1 so that all queries regarding IBM stocks
run on one machine, and all MSFT queries on another. Second,
as described in [27], complex NFA’s designed to run on a single
computer can be decomposed into separate processes running in a
distributed system. The next section will propose different tech-
niques within these two categories, and discuss the challenges for
each of them.

3. DISTRIBUTING CAYUGA

Cayuga implements several techniques to reduce the load of event
processing on a single machine. We shall now discuss techniques
from distributed computing that can be adapted to scale up the pro-
cessing capacity of Cayuga on a cluster of machines. We divide
our techniques into two categories; row/column and pipelining. Fi-
nally, we discuss combinations of these techniques.

3.1 Row/Column Scaling

A technique to scale query processing in stateless publish/sub-
scribe engines is to organize the queries in a n X m matrix, as shown
in Figure 2. The queries are divided equally among the machines
inarow R; = {1,2,...,n}. This row is then replicated m times,
forming a row/column matrix. An incoming event is dispatched to a
row ¢ chosen, for instance, in a round-robin fashion, and replicated
to each machine in that row. This guarantees that every event is
matched against every query. A stateless query model requires no
communication between queries running on separate machines, and
event dispatching does not need to consider which machine runs a
given query. The advantage of this technique is that it allows event
processing to scale nicely by the number of available machines, and

more machines can easily be added to increase processing capacity.

Unfortunately, basic row/column scaling cannot be directly ap-
plied to stateful event pattern matching. If the automata in a given
row detect an event that marks the beginning of a pattern, then ev-
ery event that can finish that pattern must be delivered to and pro-
cessed by that particular row.” If the event dispatcher selects rows
in a random or round-robin fashion, the entire cluster might need
to synchronize state between each incoming event to ensure that no
query patterns go undetected. This is not a scalable solution.

We conjecture that a row/column matrix can be used to scale
stateful event pattern matching system if related events are always
processed by the same queries. There are at least two ways to
achieve this. One is to partition the original input stream into sub-
streams of related events within the original stream. One or several
rows are then assigned to receive all events in a specific substream.
It is the selectivity of the query workload that define such sub-
streams. Queries that select different events from the input stream
thus define one substream each. In stock applications, the stock
ticker name partitions the input stream if all queries depend on in-
dividual stock tickers. Query-aware stream partitioning is also ap-
plied in Gigascope [18].

Once a partitioning into substreams is determined, it can be ex-
pressed as Cayuga queries that select events in the original stream
to publish on separate sub-streams. In their most basic form, the
partitioning queries consist of a selection predicate and a renam-
ing operator that changes the stream name of the event to a name
identifying its substream. We can then install these queries on a
designated machine, which will function as an event dispatcher
for the matrix. Note that the most basic partitioning queries can
also be expressed as hash functions. Splitting the stream and pro-
cessing it in parallel require that output from the partial streams
are merged. Adding split and merge functionality to partition the
stream is equivalent to Box Splitting in Aurora* [9].

Our second technique to scale using a row/column matrix is par-
titioning of the query workload, similar to query plan partitioning
in Borealis [7]. In this technique, a full replica of the input stream is
delivered to each row. To make each row process different stream
partitions, we partition the query workload across the rows. The
effect is that the machines in each row will receive but disregard
most events. If the query workload consists of a set of queries
with static predicate parameters, then the queries can be distributed
across rows as they are. However, queries with dynamic predicate
parameters will need an extra selection predicate to limit which
events it will process. In a stock application, we can add a selec-
tion predicate that selects events based on the stock ticker name.

Both techniques have drawbacks. Query set partitioning does
not reduce the rate of events that each machine receives, so each
machine must evaluate many more events than are actually relevant
for its queries. Stream partitioning leaves many redundant queries
at each machine, since their host machine will never receive events
that are related to them. However, stream and query set partitioning
can be used together so that each row only runs queries for events
that will actually arrive. A drawback we share with other systems is
that stream partitioning becomes a bottleneck, as the total through-
put of the system cannot be higher than that of the dispatcher.

One approach to alleviate the bottleneck is to use multiple dis-
patchers. In this case, all dispatchers receive the same input stream
in order to share the load of event dispatching. Another is to re-
move the use of dispatchers altogether. In the latter case, the full
event stream will be delivered to all rows and the only optimization
we have discussed so far for this situation is query set partitioning.

*We define related events as a sequence of events that may be part
of the same query pattern.

part. #2
$1.name =
part. #1 $2.name part. #3
$1.price
>$2.price
part. #5
$1.name =
part. #4 $2.name part. #6

$1.price
>$2 price

part. #8

$1.name =
part. #7 $2.name part. #9
Name = $1.price

'GOOG' >$2 price

Figure 3: An NFA partitioned into nine parts that can be con-
figured to run as pipeline steps on separate machines.

Our conjecture is that row/column scaling can improve through-
put. The two contributing factors is that both the event rate per
NFA, and the number of predicates that must be evaluated per event
per machine are lowered linearly as more machines are added.

3.2 Pipelining

Row/column partitioning increases the number of queries that
can be processed at a given throughput rate. It equally increases
throughput for a given number of queries by dividing queries and
events across a cluster. However, it is still possible that the pro-
cessing cost of even a single query can be too high for a single
machine. In this case, the query itself must be split up and dis-
tributed to scale up throughput. This can be the case for query
automata with many states, and consequently many predicates, or
with costly predicates. Boxes and arrows-based systems such as
Aurora* solve this scenario by distributing boxes across multiple
machines, and streaming the output from one operator into the in-
put of another [9].

In contrast, Cayuga does not have any logically separate oper-
ators or components that can be easily distributed. The compu-
tational units in Cayuga are NFA edge predicates, belonging to a
given NFA state. Those states are in turn connected by forward
edges. The Cayuga query language allows to split any nested query
into smaller queries, and forward output from one query to another
via a feature called resubscription. On an automaton level, this
means every automaton with at least one forward edge can be split
into smaller automata that run on separate machines, connected and
synchronized to run as a pipeline. Figure 3 shows how the automata
from Figure 1 can be decomposed into nine pipeline steps.

It is important to note that the graph in Figure 3 is neither a
dataflow graph nor a regular pipeline, but an instance flow graph.
All states except the end states can have predicates, which are eval-
uated for every incoming event. Since an incoming event can cause
state transitions in every state of an automaton, each state must re-
ceive every event. When an NFA is split at arbitrary forward edges
without other changes to the queries, the input stream must be repli-
cated and equally delivered to all NFA components. Additionally,

the output stream from the components #1, #4, and #7 must be de-
livered to components #2, #5, and #8, respectively. The throughput
improvement from decomposing the NFA might then be reduced by
the disadvantage that the rate of incoming events actually increases
for some components.

Some queries can be decomposed and additionally rewritten to
avoid this extra overhead. For example, if a query looks for ten con-
secutive stock events, it can be divided into two sub-queries where
the first looks for five consecutive events and the second looks for
two consecutive events coming from the first sub-query.

Our conjecture is that partitioning the query NFA and pipelin-
ing its partitions can improve overall throughput to reach that of
the most demanding partition. For maximum throughput, an NFA
should be split so that the most demanding state runs on a separate
machine. If the load of a single state exceeds the load of the rest
of an automaton, it hardly makes sense to partition the query into
more than two parts even if the automaton has several more states.

3.3 Combined Techniques

It is possible to combine row/column scaling with pipelining.
In this case, the rows in the row/column model are replaced by
replicated pipelines. The dispatcher partitions the stream so each
pipeline replica process one partition each.

Stream partitioning requires a dispatcher, which may become a
bottleneck. A separate dispatcher can be avoided by moving the
stream partitioning predicates to the processing machines. The
technique replicates the query set to all rows, then modifies each
replica by adding a predicate on the first forward edge. The added
predicates correspond to those that would have been used in the
dispatcher to partition the input stream. The effect is equivalent to
query set partitioning, since each row must still receive the full in-
put stream. For ease of reference, we name this technique vertical
NFA partitioning.

4. IMPLEMENTATION

Cayuga consists of approximately 23,000 lines of C++ code, in-
cluding its own copying garbage collector and query compiler. It
runs on Windows, Linux, and OS X. The source code for the cen-
tralized version is freely available for download [8]. It was a design
requirement for the distributed Johka system that it should be fully
compatible with the centralized Cayuga system. Our goal was not
to build a new query engine, but rather to evaluate if and how an
existing centralized engine could be used in a distributed setting.
Our approach has been to wrap the Cayuga processing core with
a new communication layer. This layer has added an ability to re-
ceive events in batches to limit lock contention and to create larger
messages for the network. We have also moved serialization costs
from the core thread to the I/O threads. We observed that this was
beneficial on multi-core systems when the process is CPU bound
by the core thread. The original source code we downloaded has
been thoroughly profiled and optimized for our use.

4.1 Internal Architecture

The Cayuga system is multi-threaded and event driven. It has an
object-oriented design with clearly defined borders between event
processing and /O, allowing administrators to configure at startup
which input and output components to use. The typical configura-
tion includes one thread for the query engine, and separate event
receiver and sender threads for I/O. Figure 4 shows this architec-
ture, along with the necessary queues and the Cayuga heap where
the events and instances are stored. The system has event receivers
and senders for the file system and raw sockets. The event receiver
will receive, deserialize and allocate events on the Cayuga heap (1),

3 5 6
—> . Event
;,{Query EngmeJ—» l ™ Sender]

2
Event
Receiver

Figure 4: Cayuga System Architecture.

then insert a reference to them on a priority queue (2). The priority
queue sorts the events by epochs, so when the query engine polls it
(3), a reference to the event with the lowest epoch is returned. The
query engine will then evaluate the event and update NFA state in-
stances (4). References to output events are put on the output queue
(5), allowing the event sender to fetch batches of event references
(6). The event sender is responsible for serializing and deallocating
the output events from the Cayuga heap (7).

Our first challenge was to optimize the queue semantics for high
throughput under varying event rates. Originally, both queues had a
non-blocking push-one, pop-one functionality. Before popping an
event from a queue, the consumer had to check that the queue was
non-empty by calling peek. Instead of blocking on pop when there
were no events to consume, the consumer would sleep for a set
period if peek returned NULL. There are two drawbacks to this
scheme. One is that push-one, pop-one can cause the producer and
consumer of a queue to compete for the lock, which is expensive
since pthread calls go to the kernel if the lock is contested. Typi-
cally, the threads would be processing events at different speeds so
the queues would either grow or stay empty much of the time. Sec-
ondly, sleeping on empty queues works well for workloads where
events arrive steadily so the queue rarely, if ever, empties. How-
ever, it can cause variable latency during bursty load in a cluster
where different machines receive and process events at different
rates. Variable latency between bursts makes it difficult to set the
sleep period a-priori. One solution is to adjust sleep times dynami-
cally during runtime [15].

To alleviate the push-one, pop-one issue, we chose to extend the
queue APIs. Producers and consumers now push and pop batches
of events, and they can block until new events are available. The
priority queue function peek() is given an additional parameter that
allows the query engine to block on a conditional wait until data
is available. If peek(block = false) is called when the priority
queue is empty, it returns NULL. The query engine thread can
then perform garbage collection if necessary. Additionally, all out-
put buffers are flushed before the engine thread blocks. Using a
conditional wait to block for a batch of events removes the need to
dynamically adjust sleep times.

Batched queue operations requires that each thread has a private
queue of the same type as the shared queue. Events are retrieved
by calling Queue—popQueue(private@Qptr), which blocks on a
condition variable. Queue—pushQueue(privateQptr) is called
by the producer when it has put a set number of events on its pri-
vate output queue. This function switches the two queue pointers,
signals on the condition the consumer is blocking on, and returns
a pointer to the empty queue that came from the consumer. Then,
the consumer is unblocked and popQueue returns a pointer to a
full queue. A buffer is flushed with a single operation when it has
reached a preset threshold. The gains of batching must be weighed
against the added latency it takes to build a batch [15]. In Johka,
buffer thresholds must be tuned to keep outgoing events from wait-

ing too long when the throughput is low, and maximize batch gains
during high load.

4.2 Connecting Cayuga Engines Using Spread

We decided to use the Spread Toolkit for communication [5, 25].
Spread has an API that fits to the existing Cayuga architecture. Us-
ing a group communication system gives us an abstraction where
we can map streams and substreams directly to group names. Our
second challenge was to integrate Cayuga with Spread for max-
imum throughput under varying circumstances. We have added
new I/O components for sending and receiving events using Spread.
These components send batches of events in messages up to 100
KB for better performance under Spread.

An important task of the communication layer is to perform query-
aware event partitioning. Our solution is to map event stream iden-
tifiers to Spread multicast groups. A designated Cayuga machine,
named the event dispatcher, groups and dispatches incoming events
to the processing engines. The dispatching workload partitions the
event stream into substreams, and renames the event stream identi-
fier of events according to their designated substream. Partitioning
and stream identifier renaming correspond to the query partitions
on the cluster. Events are then multicasted on the groups where the
corresponding processing engines are listening.

We use a set of scripts to create configuration files that contain
the mapping between Cayuga stream identifiers on the query level
to multicast groups on the Spread level. When a Cayuga engine
starts, it reads a configuration file pre-written especially for that
machine. It subscribes to one or more input groups as specified
there. Event stream replication is done by having several receivers
subscribe to the same Spread group. During event stream parti-
tioning, each Cayuga engine is given a set of output groups where
its subscribers are listening. The event sender thread then uses an
event multiplexer to map outgoing events to groups in the same
way the configuration files direct which queries should be loaded
where, effectively routing events to the correct engines.

4.3 Synchronization

The temporal semantics of event sequences in Cayuga requires
that all simultaneous events detected at epoch ¢; are processed be-
fore the engine can proceed to process events at ¢;1. During event
partitioning, sequential stream partitions can be processed in paral-
lel. Consequently, a condition defining correct behavior is broken
when strictly ordered events can arrive out of order where those
parallel stream partitions are merged. However, this broken con-
dition can be masked as long as we merge the output from those
parallel stream partitions correctly. We do this by making sure ev-
ery engine has received all output for epoch ¢; from its predecessors
before it can proceed to epoch ;41. The challenge lies in making
an efficient implementation that does not void the advantage given
by the parallelization optimization.

To a certain extent, the problem is already solved by the buffer
functionality present in Cayuga. If an event belonging to epoch
ti+1 arrives before an event belonging to epoch t¢;, while Cayuga is
still processing at epoch t;—1, correct ordering is guaranteed by
the semantics of the priority queue. Similar problems are han-
dled in window-based systems by using heartbeats to signal the
end of epochs [19, 26]. The advantage of processing fixed time
windows one by one is that even though events arrive out of order
and with unpredictable timestamp gaps due to filtering, a heartbeat
can flush blocked operators and input buffers such as our priority
queue. However, if for some reason an event belonging to epoch
t;—1 arrives while Cayuga is processing epoch ¢;, the event cannot
be processed and must be dropped.

Cayuga originally assumed a strictly ordered input stream. There-
fore, it always consumed the next event as decided by the priority
queue semantics, and updated its epoch counter to the epoch that
event belonged to. That has been changed so that it can never incre-
ment its epoch counter by more than one step. This preserves the
condition of causal ordering. However, in the case where events are
filtered by up-stream engines, there might not be events for every
epoch. This can cause Cayuga to block and wait forever as there
is no way to know whether or not an epoch update will arrive. In
Johka, we solve these synchronization issues by introducing a spe-
cial punctuation event to signal the end of an epoch(EOFE). These
EOFE events must be present in the stream when it arrives at the
cluster, can not be filtered by queries, and must be sent to all out-
put groups. The event receiver thread in each Cayuga engine must
know how many publishers there are in its input groups, (i.e., how
many FOFE messages to expect per epoch). When all EOFE events
are received, Cayuga knows that all events for that epoch have been
sent from their publishers, received and processed. It is now safe to
move on to the next epoch, and the engine sends EOE events to its
subscribers for the epoch it just completed. The peek function of
the priority queue enables the query engine to inspect which event
is next in the queue without actually removing it from the queue.
For efficiency, EOFE events are not sent through the NFA engine.

Our scheme meets the critique by Li et al. [20], and solves an
important distributed synchronization issue in Johka. Although the
solution enables fault detection, there is currently no way to recover
and proceed if an upstream publisher fails to forward EOE events.

4.4 1/0 Optimizations

To evaluate our new design, and to investigate any potential for
improvement, we performed several incremental performance tests.
Table 1 compares the throughput in events/sec in five different se-
tups. Experiments that include NFA processing, are measured us-
ing an event dispatcher workload for stock data.

Table 1: Throughput of different versions.
Spread Orig. Queues Bypass Parse Final
1,554,122 25,514 38,023 996,086 96,279 94,075

For comparison, the first column is the maximum event rate we
could achieve with Spread between two machines. We then add
a third machine running Cayuga in the middle, forwarding from
the sender to the receiver. In the second column, the original Ca-
yuga distribution with support for Spread achieved a throughput of
only 1.7% of Spread’s maximum. We then profiled and optimized
memory handling, and introduced new queues. The Queues col-
umn shows that throughput increased to 38,023 events/sec. New
profiling revealed bottlenecks in event parsing and output event
production in the query engine thread. On a single-core CPU,
threading can not alleviate such bottlenecks. However, our clus-
ter consists of multi-core machines. We subsequently adapted Ca-
yuga to multi-core CPUs by offloading this load to the two I/O
threads. For reference, the Bypass number shows throughput when
we measure the overhead of receiving and forwarding incoming
events from Spread. In this experiment, no events are parsed or
processed. The input thread queues entire batches, which the en-
gine thread passes directly to the output queue. The sender thread
then immediately passes the batches to Spread. The throughput was
now 70% of Spread’s throughput between two machines. Adding
a second sending member to the Spread segment may account for
large portions of this 30% drop. For the Parse throughput, we add
event parsing and pass all events through the queue system, only

bypassing the NFA itself. Throughput now drops to one tenth. NFA
processing is re-introduced in the Final column without significant
impact, giving a throughput of 94,075 events/sec.

The results show that I/0 is the dominating cost of event process-
ing on a single machine. Parsing and copying events is CPU inten-
sive. The current implementation is an attempt to lower the impact
of I/O on throughput. The remaining bottlenecks consist mainly of
parsing events from the ASCII-encoded input stream into memory,
and copying NFA instances to produce output events. In the rest of
the paper, we will refer to the final, optimized version of Cayuga
unless stated otherwise.

S. EXPERIMENTS

To evaluate the effects of our NFA distribution schemes, we have
conducted several experiments. Our experimental platform consists
of 13 machines, each with two Intel Xeon E5335 2 GHz Quad Core
CPUs, i.e. eight CPU cores per machine, and 8 GB of main mem-
ory. The machines communicate over a 1Gbit fully switched net-
work, and use NTP to synchronize clocks. All measurements are
repeated at least ten times and all reported numbers are mean av-
erages with a measured deviation of less than 2.5% without outlier
elimination. Unless otherwise specified, our experiments are based
on streams of ten million events with 1,000 stock symbols each.

Throughput on Spread improves when events can be batched into
larger messages to reduce the overhead per event. We evaluated
message sizes from 25 bytes to Spread’s maximum size 100 kB.
The highest event rates, corresponding to 400 Mb/s, was achieved
with the maximum size. This batching will sometimes give a bursty
network traffic pattern. To better tolerate such traffic, we have re-
compiled Spread with message buffers ten times larger than default.
Because Johka does its own application level synchronization, mes-
sages are sent using Spread’s FIFO by sender ordering semantic.
All experiments assume a static group membership, and we do not
consider failures. However, we do request reliable message deliv-
ery from Spread in case of packet loss due to network congestion.

To emulate an external event source, a special process running on
a designated cluster machine reads an input file from disk, logs its
start timestamp and sends events at a set rate to the event receivers.
If a dispatcher is used, it is the only receiver. It will then perform
the query-aware event forwarding to the event processing engines
where the actual experiment workload runs. The event dispatching
queries used in our experiments group stock events by their stock
names, which ensures an equal distribution of stock symbols across
the processing engines. A designated cluster machine merges the
output streams and logs the time when all events have been re-
ceived. Throughput is measured from when the first event is sent to
Johka until the last output event has been received by the merging
machine.

5.1 Single Machine Baseline

We will now evaluate the effect of workload characteristics on
the throughput of Cayuga running on a single machine. We conjec-
ture that varying NFA size and selectivity will affect throughput.
The NFA size is varied by first experimenting with an increasing
number of queries. Some of these queries are for events that are
not present in the stream, thereby reducing the overall selectivity
of the NFA. Second, the NFA size is varied by experimenting with
queries for event sequences of increasing length.

In the first experiment, we query patterns within streams of stock
exchange updates. The queries are for ten consecutively increas-
ing stock price updates, and have static indexed predicates. As in-
put to the experiment, we generated two event streams, S1 and S2,
each containing 500,000 stock exchange updates. Stream S1 con-

1le+06 T
1000 symbols
3000 symbols -------
o
Q
£
|2}
€ [T
[
i
= 100000 [E
> AN
o
=]
(=2
3
o
<
e
10000 ‘ : ‘
1 10 100 1000 10000

Number of Installed Queries

Figure 5: Event throughput vs number of predicates.

tains 1000 different stock symbols, while S2 contains 3000 differ-
ent stock symbols. To ensure an even and predictable output flow,
both S1 and S2 are generated so that stock prices are monotonically
increasing. We feed these streams to Cayuga while varying the
number of installed queries from one to 3,000 for S1, and from one
to 6,000 for S2. The first 1000 queries on stream S1 are for stock
symbols that exist within the stream, while the remaining 2000 are
not in the stream. On stream S2, only the first 3000 queries are for
symbols in the stream. Increasing the number of queries until every
event triggers a query, allows us to observe how Cayuga performs
when the stream contains events that are not sought for. This will
show us how efficient the engine is with redundant queries.

Adding more queries implies that the number of states in the
NFA grows, and that more predicates must be evaluated for each
event. Figure 5 shows how throughput decreases as we increase
the number of queries. The graphs start in the upper left corner
showing that Cayuga manages a steady throughput with one to 16
queries of approximately 167,000 events/sec on the large stream,
and 195,000 events/sec on the smaller stream. Throughput starts
declining after 16 queries, indicating that the bottleneck shifts from
I/0 to CPU when we add more queries. We increase the number of
queries until each stock symbol is covered by a query, at 1,000 and
3,000, respectively. We observe that throughput decreases linearly
to approximately 17,000 and 24,000 events/sec.

The declining curves indicate a correlation between event through-
put and the number of installed queries. The curves both reach
a bottom and flatten to a plateau, respectively at 1,000 and 3,000
queries. Adding more queries increases the number of states in the
NFA, but not the number of predicates that must be evaluated for
each event. Cayuga does not evaluate queries for symbols that are
not in the stream. Thus we can conclude that NFA size and se-
lectivity affect throughput. More precisely; throughput is directly
affected by the number of predicates that must be evaluated for ev-
ery event.

The skew between the graphs indicates the batch benefits of a
stream with three times more events per epoch. To preserve con-
currency properties, all state transitions within one epoch are not
visible until the next epoch. Cayuga will then install all new in-
stances as a batch. Thus the 3,000 stock stream triggers fewer NFA
update operations per second, which allows a higher throughput per
predicate than a stream with fewer events per epoch.

Each run in the second experiment uses a 1,000 symbol stream
and a single query with dynamic predicates. The first run uses a

120000
100000
o
Q
2
G 80000
c
[
>
w
< 60000
o
=]
[=2)
8
2 40000
£
20000 - 3
0 | | | | | | | |

States

Figure 6: Event throughput vs sequence length.

query with one middle state that looks for two consecutively in-
creasing stock price updates. This query is similar to the queries
in Figure 1, except it does not have a static predicate on the initial
forward edge. For each run, we add one more such middle state.
This increases the NFA size by adding more states in a different
way than by adding queries. Each event will lead to a number of
state transitions that is equal to the sequence length, since every
price update is an increment. Thus, doubling the sequence length
of the installed query should double the number of state transitions
per event, and also double the storage requirements for the NFA.

Figure 6 shows how throughput declines as the number of states
increase. Cayuga manages a throughput of approximately 123,000
events/sec for a query with one middle state. The graph shows that
throughput declines approximately 40% each time the NFA size
doubles. Doubling the NFA size also means doubling the number
of predicates that must be evaluated. These findings are consistent
with the previous experiment, showing that throughput is directly
affected by the number of predicates that must be evaluated for
every event.

5.2 Event Dispatcher Capacity

We have measured the capacity of Spread between two machines
at 400 Mbit/s., which is near the Gigabit capacity of our network.
However, using an event dispatcher adds overhead and may be-
come a bottleneck. To alleviate the potential bottleneck of a single
dispatcher, we evaluate the effect of using up to four dispatchers in
parallel. We employ query set partitioning to divide the partitioning
workload among the dispatchers.

Surprisingly, this dispatcher does not scale. Throughput increases
little, from 94,000 to 96,300 events/sec as we increase from one to
four dispatchers. Adding more dispatchers means each dispatcher
produces less output, but does not change the rate of incoming
events to each dispatcher. Offloading production of output events
to the sender thread means that the cost of filtering out an event is
not much lower than the cost of producing an output event. Thus,
a dispatcher does not gain from a more selective workload, and the
workload per dispatcher is not reduced as we add more machines.

The observed throughput of the dispatcher is still just one-tenth
of the throughput of the batch forwarder shown as Bypass in Ta-
ble 1. Since Spread is based on a token-ring protocol, network
bandwidth is divided equally between all participating senders in
a Spread segment. Thus, the end-to-end throughput will decrease
with the number of Spread clients that are introduced between the

end-points. This effect is illustrated in Table 1, where the Bypass
using three machines gets only 2/3 of the throughput achieved by
two machines in the Spread experiment. Thus, adding a machine to
run as a dispatcher could reduce the potential end-to-end through-
put by as much as 1/3. Furthermore, the dispatcher is a Cayuga
engine that splits the incoming stream into substreams based on ar-
bitrarily complex rules expressed in CEL. However, if the stream
partitioning rules are simple enough to be expressed as hash func-
tions then using Cayuga as a dispatcher can become an unnecessary
bottleneck. For comparison, we developed a stateless dispatcher
that treats all events as raw byte arrays. A hash function inspects
the first field in an event, in our case a stock ticker name, hashing it
to a Spread group name. The event can then be sent without extra
copies or serialization.

1e+06

900000 XK]
L Cayuga —— |

800000 e

‘2 700000 |- i

Yy

[%]

£ 600000 | i

@

< 500000 |- i

>

£

S 400000 | i

=]

g

£ 300000 | i
200000 | i
00000

O 1 1 1 1 1
1 2 3 4 s 8 10

Groups
Figure 7: Throughput vs. the number of groups.

The dispatcher implements stream partitioning by publishing ev-
ents belonging to separate substreams on separate Spread groups.
Figure 7 shows an experiment where we measure the effect of in-
creasing the number of Spread groups. In this experiment, there is
only one receiving machine, receiving all events from all groups.
We introduce the stateless, hash-function based dispatcher here.
We observe that its throughput is approximately 900,000 events/sec,
almost one magnitude higher than that of the Cayuga-based dis-
patcher. Throughput declines slowly when we add more groups in
both cases.

700000

Bybass —
Cayuga ---x---

600000

500000
400000 | il 8

300000 | i

Throughput (Events/sec)

200000 | X~ g

LN
1

100000

0 I I I I
1 2 4 6 8 10

Machines

Figure 8: Throughput without Cayuga.

We then measure the impact Spread has on throughput as we add
more machines. Figure 8 shows the results from the stateless dis-
patcher sending to up to ten machines. First, each machine runs
Cayuga with the dispatcher workload sending to a single group.
Second, each machine runs the Bypass version. We observe that
throughput for Cayuga scales linearly up to five machines, which
process 500,000 events/sec together. However, throughput does not
increase above that. Throughput for the Bypass version declines
when more machines are added. The graph shows that Johka will
benefit from input stream partitioning, but that throughput may at
some point top out when Spread can no longer deliver enough band-
width. We can already conclude that Spread will become a bot-
tleneck in scaling Johka if the distributed workloads become 1I/0O
bound.

5.3 Row/Column Scaling

Guided by the performance analysis of a single Cayuga engine
in Section 5.1, we conjecture that we can improve throughput by
reducing the amount of predicates that must be evaluated per ma-
chine. We will do this as outlined in Section 3 by partitioning the
input stream and query set across a number of machines.

S 1 S 2a

Source

()

Figure 9: Example cluster layout for row/column scaling.

Figure 9 shows a simple cluster layout for row/column scaling.
The machines C1, C2 and C3 will process the stream S1 in parallel.
The query set is partitioned equally across the three machines, and
in this example each machine will process every event. We imple-
ment row scaling by partitioning the input stream and replicating
the query set. This reduces the number of predicates that must be
evaluated by reducing the number of symbols in the stream parti-
tion each machine receives. We implement column scaling by repli-
cating the input stream to all processing engines, but partitioning
the query set. This reduces the size of the NFA on each processing
engine, and thus the number of predicates that must be evaluated
for each incoming event. Note that query set partitioning is only
possible when the workload contains multiple queries. We achieve
full row/column scaling by combining the two such that each ma-
chine has a partition of the query set, and only receives events that
will be matched by its predicates. To show the generality of our
approach, we will evaluate it with two different workloads.

The first query set consists of 1,000 queries (N = 1, 000), one
for each stock ticker, where each looks for ten sequentially increas-
ing stock prices (L = 10). We generate an input stream for this
workload where the stock prices always increase. Thus, there will
be one output event for every event except the nine last on each
stock. The query set consists of multiple queries, so we can apply
our techniques to it one by one and then together.

Figure 10 shows the results of the different configurations. We
observe that query set partitioning increases sublinearly from 11,000
events/sec to 46,500 events/sec. Input stream partitioning has close

140000 , :
query part —+—
input part ---x---
120000 | hashed input part ------

100000 |- T i
80000 |- i

60000

Throughput (Events/sec)

40000

20000

0 1 1 1 1 1
1 2 4 5

Machines

Figure 10: Row/column scaling of 1,000 static queries.

to linear performance gains until it catches up with the dispatch
rate using four machines. Query set partitioning has lower effect
than stream partitioning. This is consistent with the observation
in Section 5.1. While they both reduce the number of predicates
that must be evaluated, combining them cannot reduce the number
further. Thus, we omit combined results from the graph.

Referring to Figure 8, we can assume that Johka is now bound
by the dispatchers capacity. The final plot in Figure 10 shows that
the stateless input stream partitioner scales this workload further,
since its throughput is larger than the processing capacity of ten
machines.

The second query set is a single complex query used in technical
analysis of stock trade data, where event stream pattern matching
can be applied to recognize trading opportunities. The query looks
for patterns where stock movements appear as an M-shaped curve
on the chart. For this experiment, we only evaluate input stream
partitioning. It has dynamic filter predicates, i.e. event.name =
node.name. In contrast to the first query set, where each query
looked for a pattern on a specific stock, this query looks for any
stock with this pattern. However, since the previous query set cov-
ered the entire set of stock symbols, the effect is the same. To en-
sure that this query has any output, we carefully generate an input
stream that contains M-shape patterns.

250000

200000

150000

100000

Throughput (Events/sec)

50000

0 I I I I
1 2 4 6 8 10

Machines

Figure 11: Row/colum scaling of the M-Shape query.

Figure 11 shows that this workload has a lower throughput since
it is more demanding per machine than the previous, but it appears
to scale linearly on our cluster. We did not have enough machines
to observe this workload meet the capacity of the dispatcher, but its
scaling properties are the same as the previous workload.

5.4 Pipelining

The second approach to reduce the number of predicates that
must be evaluated is to split the automata into several parts. Each
of these parts can then run on separate machines, organized as
a pipeline. All pipeline steps must still receive the original in-
put stream in addition to the output stream from their predecessor.
However, we expect that processing sub-automata in a pipeline can
increase throughput.

Source

Figure 12: Two step pipeline.

Our first query is looking for three consecutively increasing stock
prices. The query automaton is similar to the automata shown in
Figure 1, but has one more middle state with a filter edge, in to-
tal four states. It has dynamic predicates, and thus looks for any
stock with this pattern. We will divide this query on the forward
edge between the two middle states and run them as two steps in a
pipeline. The resulting cluster layout is shown in Figure 12. Notice
that machine C2 receives all events from D as well as the output
stream S2a from C1.

70000

65000

60000

55000

50000

45000

40000

Throughput (Events/sec)

35000

30000

25000 5 .
1 2 4 8

Machines

Figure 13: Pipelining eight states.

As two states cannot be pipelined across more than two ma-
chines, Figure 13 shows the effect of pipelining a query with eight
states looking for nine consecutively increasing events. Throughput
for the entire query on one machine is 28,300 events/sec, which in-
creases 40% when it is pipelined across two machines. From two to
four throughput increases approximately 35%, and approximately
25% from four to eight machines. Pipelining an NFA requires that
a pipeline step receives the output stream from its predecessor as
well as the original input stream. Thus, later steps in a pipeline will
receive more events than the first step, explaining the decreasing
speedup factor.

5.5 Combined Techniques

Row/column scaling can be combined with pipelining by repli-
cating the query pipeline and partitioning the input stream between
the pipelines. The combination lowers the amount of predicates
that must be evaluated per pipeline step by partitioning the input
stream.

Source

Figure 14: Combining Row/Column with Pipelining.

We will replicate the query pipeline of length three shown in
Figure 12 to run on four and eight machines. Figure 14 shows
an example cluster layout for three pipeline replicas a, b, and ¢
for the six machines C'1-C6. The event dispatcher D partitions
the input stream SO into the streams Sla, S1b and Slc. These
are replicated to both machines of each pipeline. The results are
shown in Figure 15. The datapoints for one machine represent both
pipeline steps running on a single machine, and the datapoints for
two machines are for a single, un-replicated pipeline. The graph
shows that four machines met the capacity of the Cayuga dispatcher
at approximately 90,000 events/sec.

240000

220000 |- A
200000 | g
180000 | >< -
160000 | .
140000 - |
120000 | E
100000 - .

Throughput (Events/sec)
X

80000
60000

40000 input part —+—

hashed input part ---x---
L |

20000 5 .
1 2 4 6 8 10

Machines

Figure 15: Throughput for Row/Column with Pipelines.

Next we use the dispatcher with hash-based input partitioning.
We observe that throughput is no longer limited by the dispatcher,
and scales close to linearly. Throughput for ten machines is more
than twice than with the Cayuga dispatcher.

To avoid the bottleneck imposed by the dispatchers, we intro-
duced vertical NFA partitioning as an alternative. In the next exper-
iment, we replace the dispatcher with corresponding forward edge

predicates on each of the pipeline partitions. This causes every par-
tition on each pipeline to receive the full stream, but only process
their designated events.

65000

60000

55000

50000

45000

Throughput (Events/sec)

40000

35000 L L L L
1 2 4 6 8 10

Machines

Figure 16: Throughput for vertical NFA partitioning of a
length 2 pipeline.

Figure 16 shows the results of running the pipeline in Figure 15
on one machine, pipelining it on two, and replicating it to four, six,
eight and ten machines. Similar to the previous experiment, results
dip at two machines. This is due to the second pipeline step having
to process many more events than the first. Compared to the results
in Figure 13, which does not dip at two machines, a query with
two middle states requires less CPU than eight middle states. This
means that throughput depends to a larger degree on I/O overhead,
which is lower on a single machine than on two.

There is no gain from not using a dispatcher for one and two
machines. However, from four machines and up the throughput for
the same number of machines is considerably lower than with a
dispatcher.

5.6 Discussion

We observe from our experiments that input stream partition-
ing lets our NFA-based CEP system scale close to linearly. Using
pipelining to partition NFAs appears to not scale well, since each
new pipeline step must receive more events than the previous. This
hurts throughput, which is affected by the rate of incoming events.
It is possible that other workloads where the first step filters out
most events would behave differently. However, in this case the
first step is likely to be the bottleneck of the pipeline, thus limiting
the effect of pipeline scaling.

Although using a Cayuga engine to partition the input stream is
flexible and allows for complex partitioning rules, it quickly be-
comes a bottleneck. We introduced an alternative, a stateless dis-
patcher based on a hash-function that treats events as raw byte ar-
rays. It improved the scalability of Johka an order of magnitude
above that of using Cayuga to dispatch events. However, usability
reasons makes a hardcoded approach less attractive.

6. RELATED WORK

Some classes of queries can be very expensive to evaluate even
when the event rate is reduced through partitioning. The approach
then is to reduce such queries into components that can be eval-
uated individually. Operator-based event processing systems such
as Borealis and System S have the advantage that their query op-
erators are strictly separated components [1, 4]. Such components

can be distributed across a cluster of machines, with query plans
partitioned and executed in a distributed fashion. The machines
in the system then cooperate to evaluate every event. Since there
is no strong notion of operators as components in NFA-based sys-
tems, this technique cannot be directly adapted to work for Johka.
Our solution exploits low-level parallelism of the Cayuga automa-
ton to divide it into sub-automata that run on separate machines
connected by the network and coordinated by epoch synchroniza-
tion. Pietzuch et al. implement and evaluate a distributed event pro-
cessing system using finite state machines [23]. Their basic distri-
bution principles are shared by Johka, but their implementation and
evaluation is not targeted at high-performance cluster installations.
Data and query partitioning for NFAs are techniques that resemble
pipelined and partitioned parallelism in parallel databases [13].

Dividing queries into pipelined subcomponents enables a sys-
tem to filter out non-relevant events (noise) early. Gigascope lever-
ages programmable hardware by installing query components on
the network device to reduce the amount of events that reach the
higher-level application code [10, 18]. The principle is to let non-
complex query components perform coarse initial filtering so the
more expensive query components receive less events. Johka is
geared towards a virtualized environment, where programmable
network devices cannot be assumed to be available. Early event
filtering can be taken even further by installing query components
close to their (remote) source [22]. These approaches all assume
that events are pushed towards the processing system. With a pull-
based system, Akdere et al. discuss selection and timing of event
pulls from remote sources based on a transmission cost metric [3].
Johka does not assume bandwidth constraints, but could use similar
cost-based planning for NFA partitioning.

Fault tolerance has not been a focus in our work. However,
Johka can be configured to run as process-pairs to achieve fault
tolerance [24]. This would require that output stream merging also
includes duplicate detection.

Few benchmarks have been proposed for complex event process-
ing systems. The Aurora and STREAM systems have published
results on the Linear Road [6] benchmark. The workload of Linear
Road is a mix of continuous and historic queries, of which the latter
is currently not supported by Cayuga.

7. CONCLUSIONS

The focus of this paper has been to design, implement, and eval-
uate a distributed event stream processing system based on non-
deterministic automata (NFA). Existing NFA-based systems are cen-
tralized, run on a single machine, and consequently suffer from an
upper bound on throughput. Our goal has been to improve through-
put by distributing the computation across a cluster of machines.
Approaches used in distributed operator-based systems could not
be used, since an NFA has no clear concept of operators as sep-
arate components. Techniques such as round-robin load sharing
between NFA replicas do not work. To detect patterns stretching
over multiple events, all related events must be processed by the
same machines.

The contributions of this paper are the following novel approaches
to NFA-based distributed event processing: 1) Row/colum scaling
using query-aware event forwarding, 2) Partitioning automata to
pipeline the resulting sub-automata, and 3) Combining row/column
with pipelining. Our results show that throughput for realistic work-
loads can scale when the input stream is partitioned across ma-
chines in a cluster. The lessons learned can be used to imple-
ment automatic partitioning and distributed deployment of event
processing NFAs. Our analysis may also be used as a basis for
dynamic load balancing during runtime. Our results show that di-

viding CPU-bound event processing load across several machines
is scalable. We leave for future work to consider running multiple
Cayuga engines per machine to further scale up I/O bound process-
ing on multi-core CPU architectures.

So far we have only considered transformations of tree-shaped
NFAs which enable perfect partitioning. This appears to be the
most prevalent class of queries [9, 16, 18]. We leave for future
work to consider NFAs with more complex dependencies. One un-
resolved issue is to define partitioning in mixed query workloads.

Our results have been achieved with a system that is fully com-
patible with the centralized version of Cayuga. Although our im-
plementation is based on one specific system, we conjecture that
our findings are generally valid for NFA-based event processing
systems. For some workloads, the scalability of Johka is limited by
the capacity of Spread; we conjecture that this may be alleviated by
using a different network communication system.

8. ACKNOWLEDGMENTS

The authors would like to thank Alan Demers, Ken Birman,
Krzysztof Ostrowski, Havard Johansen, and Age Kvalnes for their
valuable comments and criticisms. We would also like to thank the
anonymous reviewers for their insightful feedback.

9. REFERENCES

[1] D.J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,
M. Cherniack, J.-H. Hwang, W. Lindner, A. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. B. Zdonik.
The design of the borealis stream processing engine. In
CIDR, pages 277-289, 2005.

[2] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman.
Efficient pattern matching over event streams. In
Proceedings of the 2008 ACM SIGMOD, pages 147-160,
New York, NY, USA, 2008. ACM.

[3] M. Akdere, U. Cetintemel, and N. Tatbul. Plan-based
complex event detection across distributed sources. Proc.
VLDB Endow., 1(1):66-77, 2008.

[4] L. Amini, H. Andrade, R. Bhagwan, F. Eskesen, R. King,

P. Selo, Y. Park, and C. Venkatramani. Spc: a distributed,
scalable platform for data mining. In Proc. of DMSSP *06,
pages 27-37, New York, NY, USA, 2006. ACM.

[5] Y. Amir, C. Danilov, and J. R. Stanton. A low latency, loss
tolerant architecture and protocol for wide area group
communication. In Proceedings of DSN 00, pages 327-336,
Washington, DC, USA, 2000. IEEE Computer Society.

[6] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey,
E. Ryvkina, M. Stonebraker, and R. Tibbetts. Linear road: a
stream data management benchmark. In Proc. of VLDB ’04,
pages 480-491. VLDB Endowment, 2004.

[7] M. Balazinska, H. Balakrishnan, and M. Stonebraker.
Contract-based load management in federated distributed
systems. In Proceedings of NSDI’04, pages 15-15, Berkeley,
CA, USA, 2004. USENIX Association.

[8] Cayuga System (Accessed 11/2008).
http://www.cs.cornell.edu/bigreddata/cayuga/.

[9] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Cetintemel, Y. Xing, and S. Zdonik. Scalable distributed
stream processing. In CIDR’03, Asilomar, California, 2003.

[10] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk.
Gigascope: a stream database for network applications. In
Proc. of SIGMOD, pages 647-651, New York, NY, USA,
2003. ACM.

[11] A.J. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. M.
White. Towards expressive publish/subscribe systems. In
Proc. of EDBT, pages 627-644, 2006.

[12] A.J. Demers, J. Gehrke, B. Panda, M. Riedewald,

V. Sharma, and W. M. White. Cayuga: A general purpose
event monitoring system. In CIDR, pages 412-422, 2007.

[13] D. DeWitt and J. Gray. Parallel database systems: the future
of high performance database systems. Commun. ACM,
35(6):85-98, 1992.

[14] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross,
and D. Shasha. Filtering algorithms and implementation for
very fast publish/subscribe. In Proc. SIGMOD, pages
115-126, 2001.

[15] R. Friedman and E. Hadad. Adaptive batching for replicated
servers. In Proc. of SRDS 06, pages 311-320, Washington,
DC, USA, 2006. IEEE Computer Society.

[16] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo.
Spade: the system s declarative stream processing engine. In
Proceedings of the 2008 ACM SIGMOD, pages 1123-1134,
New York, NY, USA, 2008. ACM.

[17] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction
to Automata Theory, Languages, and Computation, Second
Edition. Addison Wesley, 2000. 2nd edition.

[18] T. Johnson, M. S. Muthukrishnan, V. Shkapenyuk, and
O. Spatscheck. Query-aware partitioning for monitoring
massive network data streams. In Proc. of the 2008 ACM
SIGMOD, pages 1135-1146, New York, NY, USA, 2008.

[19] T. Johnson, S. Muthukrishnan, V. Shkapenyuk, and
O. Spatscheck. A heartbeat mechanism and its application in
Gigascope. In Proc. of VLDB ’05, pages 1079-1088, 2005.

[20] M. Li, M. Liu, L. Ding, E. A. Rundensteiner, and M. Mani.
Event stream processing with out-of-order data arrival. In In
Proc. of ICDCS ’07 Workshops, page 67, Washington, DC,
USA, 2007. IEEE Computer Society.

[21] NASDAQ Performance Statistics (Accessed 11/2008).
http://www.nasdaqtrader.com/trader.aspx ?id=marketshare.

[22] C. Olston, J. Jiang, and J. Widom. Adaptive filters for
continuous queries over distributed data streams. In
Proceedings of the 2003 ACM SIGMOD, pages 563-574,
New York, NY, USA, 2003. ACM.

[23] P.R. Pietzuch, B. Shand, and J. Bacon. A framework for
event composition in distributed systems. In Proc. of the
2003 Intl. Conf. on Middleware, pages 62-82, New York,
NY, USA, 2003. Springer-Verlag New York, Inc.

[24] M. A. Shah, J. M. Hellerstein, and E. Brewer. Highly
available, fault-tolerant, parallel dataflows. In Proc. of the
ACM SIGMOD, pages 827-838, New York, NY, USA, 2004.

[25] Spread Concepts LLC (Accessed 11/2008).
http://www.spread.org.

[26] U. Srivastava and J. Widom. Flexible time management in
data stream systems. In Proc. of PODS "04, pages 263-274,
New York, NY, USA, 2004. ACM.

[27] A.S. Tanenbaum and M. van Steen. Distributed Systems:
Principles and Paradigms (2nd Edition), chapter 13, pages
603-607. Prentice-Hall, Inc. NJ, USA, 2006.

[28] W. White, M. Riedewald, J. Gehrke, and A. Demers. What is
"next" in event processing? In Proc. of PODS ’07, pages
263-272, New York, NY, USA, 2007. ACM.

