
The Nornir run-time system for parallel programs using Kahn process networks

Željko Vrba, Pål Halvorsen, Carsten Griwodz, Paul Beskow
Simula Research Laboratory, Oslo, Norway

Department of Informatics, University of Oslo, Norway
{zvrba,paalh,griff,paulbb}@ifi.uio.no

Dag Johansen
Dept. of Computer Science, University of Tromsø, Norway

Fast Search and Transfer, Norway
{dag@cs.uit.no}

Abstract—Shared-memory concurrency is the prevalent
paradigm used for developing parallel applications targeted
towards small- and middle-sized machines, but experience
has shown that it is hard to use. This is largely caused
by synchronization primitives which are low-level, inherently
nondeterministic, and, consequently, non-intuitive to use. In
this paper, we present the Nornir run-time system. Nornir
is comparable to well-known frameworks like MapReduce
and Dryad, but has additional support for process structures
containing cycles. It is based on the formalism of Kahn
process networks, which we deem as a simple and deterministic
alternative to shared-memory concurrency. Experiments with
real and synthetic benchmarks on up to 8 CPUs show that
performance in most cases improves almost linearly with the
number of CPUs, when not limited by data dependencies.

I. INTRODUCTION

It is widely recognized that developing parallel and
distributed programs is inherently more difficult than de-
veloping sequential programs. As a consequence, several
frameworks that aim to make such development easier have
emerged, such as Google’s MapReduce [1], Yahoo’s Pig
latin [2] which uses Hadoop1 as the back-end, Phoenix [3],
and Microsoft’s Dryad [4]. All of these frameworks are
gaining in popularity, but they lack a feature that is critical
to our application domains: the ability to model iterative
algorithms, i.e., algorithms containing feedback loops in
their data-path.

Much of our research focuses on the execution of complex
parallel programs, such as real-time encoding of 3-D video
streams and data encryption, where cycles are more rule
than the exception (see figure 2). Thus, we cannot use any
of the existing frameworks, so we have turned towards the
flexible formalism of Kahn process networks (KPN) [5].
KPNs retain the nice properties of MapReduce and Dryad,
but in addition support cycles. Even though KPNs are an
inherently distributed model of computation, their imple-
mentation for shared-memory machines and its performance
is worth studying for many reasons (see section II), the main
ones being determinism and, consequently, composability.
Determinism guarantees that a program, given the same
input, will behave identically on each run. This significantly

1An open-source MapReduce implementation in Java, available at http:
//hadoop.apache.org/

eases debugging, which is an otherwise a notoriously hard
problem with parallel and distributed computations. Com-
posability guarantees that assembling together independently
developed components will yield the expected result.

In our earlier paper [6], we have evaluated implementation
options for KPNs on shared-memory architectures. In a
follow-up paper [7], we have presented case studies of
modeling with KPNs and their comparison with MapReduce.
We showed that KPNs allow more natural problem modeling
than MapReduce, and that implementations of real-world
tasks on top of Nornir outperform the corresponding MapRe-
duce implementations. In this paper, we give implementation
details about the new version of Nornir, which is internally
significantly different from the one described in [6]; this
same implementation is also used for evaluation in [7]. We
also investigate performance and scalability characteristics
of Nornir using a set of benchmarks on a workstation-class
machine with 8 cores. Our performance experiments reveal
some weaknesses in our current implementation, but never-
theless indicate that KPNs are a viable programming model
for parallel applications on shared-memory architectures.

II. KAHN PROCESS NETWORKS

KPNs, MapReduce and Dryad have in common two
important features, both of which significantly simplify
development of parallel applications: 1) communication and
parallelism are explicitly expressed in the application graph;
2) individual processes are written in the usual sequential
manner, and do not have access to each other’s state. In ad-
dition, KPNs have a unique combination of other desireable
properties:

• Determinism. KPNs are deterministic, i.e., each execu-
tion of a network produces the same output given the
same input,2 regardless of scheduling strategy.

• Reproducible faults. One consequence of determinism
is that faults are consistently reproducible, which is
otherwise a notoriously difficult problem with paral-
lel and distributed systems. Reproducibility of faults
greatly eases debugging.

• Composability. Another consequence of determinism
is that processes can be composed: connecting the

2Provided that processes themselves are deterministic.

2009 Sixth IFIP International Conference on Network and Parallel Computing

978-0-7695-3837-2/09 $25.00 © 2009 IEEE

DOI 10.1109/NPC.2009.19

1

2009 Sixth IFIP International Conference on Network and Parallel Computing

978-0-7695-3837-2/09 $26.00 © 2009 IEEE

DOI 10.1109/NPC.2009.19

1



output of a process computing f(x) to the input of
a process computing g(x) is guaranteed to compute
g(f(x)). Therefore, processes can be developed and
tested individually and later put together to perform
more complex tasks.

• Deterministic synchronization. Synchronization is em-
bodied in the blocking receive operation. Thus, de-
velopers need not use other, low-level and non-
deterministic synchronization mechanisms such as mu-
texes and condition variables.3

• Arbitrary communication graphs. Whereas MapReduce
and Dryad restrict developers to a parallel pipeline
structure and directed acyclic graphs (DAGs), KPNs
allow cycles in the graphs. Because of this, they can
directly model iterative algorithms. With MapReduce
and Dryad this is only possible by manual iteration,
which incurs high setup costs before each iteration [3].

• No prescribed programming model. Unlike MapRe-
duce, KPNs do not require that the problem be modeled
in terms of processing over key-value pairs. Conse-
quently, transforming a sequential algorithm into a
Kahn process often requires minimal modifications to
the code, consisting mostly of inserting communication
statements at appropriate places.

A KPN [5] has a simple representation in the form of
a directed graph with processes as nodes and channels as
edges, as exemplified by figure 1. A process encapsulates
data and a single, sequential control flow, independent of
any other process. Processes are not allowed to share data
and may communicate only by sending messages over chan-
nels. Channels are infinite FIFO queues that store discrete
messages. Channels have exactly one sender and one receiver
process on each end (1:1 communication), and every process
can have multiple input and output channels. Sending a mes-
sage to the channel always succeeds, but trying to receive
a message from an empty channel blocks the process until
a message becomes available. These properties define the
operational semantics of KPNs and make the Kahn model
deterministic, i.e., the history of messages produced on the
channels does not depend on how the process execution
order. Less restrictive models, e.g., those that allow non-
blocking reads or polling, would result in non-deterministic
behavior.

The theoretical model of KPNs described so far is ideal-
ized in two ways: 1) it places few constraints on process
behavior, and 2) it assumes that channels have infinite
capacities. These assumptions are somewhat problematic
because they allow for the construction of KPNs that need
unbounded space for their execution. However, any real
implementation is constrained to run in finite memory. A

3Many inexperienced developers expect that mutexes and CVs wake up
waiting threads in FIFO order, whereas the wake-up order is in reality
non-deterministic.

×2
+

i1

i2

i′1
o

Figure 1. An example KPN. i1 and i2 are external input channels to the
network (assumed to be numbers), o is the external output channel, and i′1
is an internal channel. The inputs and the output are related by the formula
o = 2i1 + i2

common (partial) solution to this is to assign capacities to
channels and redefine the semantics of send to block the
sending process if the delivery would cause the channel to
exceed its capacity. Under such send semantics, an artificial
deadlock may occur, i.e., a situation where a cyclically
dependent subset of processes blocks on send, which would
continue running in the theoretical model. The algorithm of
Geilen and Basten [8] resolves the deadlock by traversing
the cycle to find the channel of least capacity and enlarging
it by one message, thus resolving the deadlock.

It also is worth noting that KPNs are not a universal
solution for what is an inherently difficult problem of
developing parallel and distributed applications. Even though
determinism is a desirable property from the standpoint of
program design and debugging, it limits the applications for
KPNs. A disk scheduler serving many clients is a very sim-
ple example of a use-case that is inappropriate for KPNs. It
must periodically serve all clients in some order to preserve
fairness, say round-robin, but since read is blocking, absence
of requests from one client can indefinitely postpone serving
of requests from other clients. Such use-cases mandate use
of other frameworks, or extending the KPN formalism by
non-deterministic construct(s) such as m : n channels and/or
polling.

III. NORNIR

The Nornir run-time system is implemented in C++, and
it runs on Windows and POSIX operating systems (Solaris,
Linux, etc.). The implementation4 consists of a Kahn process
(KP) scheduler, message transport and deadlock detection
and resolution algorithms.

A. Process scheduler

Since KPNs are deterministic, they give a great freedom in
implementing the process scheduler: any fair scheduler will
result in a KPN execution that generates the full output.5

In this context, fairness means that the execution of a ready
process will not be indefinitely postponed.

KPN networks could be built on top of native OS mech-
anisms, with each KP being an OS-thread. Channels would
be protected by blocking mutexes, and condition variables

4Code is available at: http://simula.no/research/networks/software
5If the scheduler is not fair, the output will be correct, but possibly shorter

than it would be under a fair scheduler.

22



would be used as the sleep / wakeup mechanism. However,
we have investigated this approach in an earlier paper [6]
and found that user-mode scheduling of many KPs over few
kernel threads is considerably more efficient.

Nornir can be configured to use different scheduling
policies. In addition to classical work-stealing [9], we have
also implemented a policy based on graph-partitioning [10]
which tries to reduce the amount of inter-CPU synchroniza-
tion and communication. Here, we describe only the work-
stealing policy because experiments on the same workloads
as used in section V have shown that it leads to much better
application performance.

When the KPN is started, m runner threads (“runners”)
are created and scheduled by the OS onto the available
CPUs. Each runner implements a work-stealing policy,
which our experiments have shown to have best performance
for computationally intensive tasks on few CPUs. With work
stealing, each runner has a private run queue of ready KPs.
If this queue is empty, it tries to steal a KP from a randomly
chosen runner. For simplicity, we do not use the non-
blocking queue described in [9]; instead we use an ordinary
mutex per run queue. This might become problematic on
machines with many cores, but we deemed that introducing
the additional complexity of a non-blocking queue was
unnecessary at this stage of our research.

The work-stealing scheduler uses a user-mode context-
switch. On Solaris and Linux running on AMD64 archi-
tecture, we employ optimized, hand-crafted assembly code
for context-switch; on other platforms we use OS-provided
facilities: fibers on windows, and swapcontext() on
POSIX. The latter is inefficient because each context switch
requires a system call to save and restore the signal mask.

B. Message transport

In KPNs, channels have a two-fold role: 1) to interact with
the scheduler, i.e., block and unblock processes on either
side of the channel, and 2) to transport messages. The initial
capacity of the channel may be specified when the channel
is first created; if omitted, the default capacity taken from
an environment variable is used.

Interaction with the scheduler is needed for the cases of
a full or empty channel. Receiving from an empty channel
or sending to a full channel must block the acting process.
Similarly, receiving from a full channel or sending to an
empty channel must unblock the process on the other side
of the channel.

Message transport over channels is protected by busy-
wait mutexes: if a KP cannot obtain the channel’s lock, it
will explicitly yield to the scheduler between iterations, until
it has finally obtained the lock. Busy-waiting allows other
processes to proceed with their computations, while avoiding
the complexities of a full-fledged sleep/wakeup mechanism.
Furthermore, since channels are 1:1, at most two processes
will compete for access to any given channel, so the expected

number of spins in the case of contention on a channel is
very small.

Since KPs are executing in a shared address space in
our implementation, it is still possible that they modify
each others state6 and thus ruin the KPN semantics. There
are at least two ways of implementing a channel transport
mechanism that lessens the possibility of such occurrence:

• A message can be dynamically allocated and a pointer
to it sent in a class that implements move semantics
(e.g., auto_ptr from the C++ standard library).

• A message can be physically copied to/from channel
buffers which is, in our case, done by invoking the
copy-constructor.

We have initially implemented the first approach, which
requires dynamic memory (de-)allocation for every mes-
sage creation and destruction, but is essentially zero-copy.
Our current implementation uses the second approach be-
cause measurements on Solaris have shown that memory
(de)allocation, despite having been optimized by using So-
laris’s umem allocator, has larger overhead than copying
as long as the message size is less than ∼ 256 bytes.
As of now, our implementation cannot choose between
different mechanisms depending on the message size, so we
recommend that large blocks be transfered as pointers.

Since C++ is a statically-typed language, our channels
are also strongly-typed, i.e., they carry messages of only
a single type. Since communication ports (endpoints of a
channel; used by processes to send and receive messages)
and channels are parametrized with the type of message
that is being transmitted, compile-time mechanisms prevent
sending messages of wrong types. Furthermore, the run-time
overhead of dynamic dispatch based on message type are
eliminated. Nevertheless, if dynamic typing is desired, it can
be implemented by sending byte arrays over channels, or
in a more structured and safe manner by using a standard
solution such as Boost.Variant (see http://www.boost.org).

As KPs have only blocking read at their disposal, it
is useful to provide an indication of no more messages
arriving on the channel (EOF). One way of doing this is
to send a message with specific value that will indicate
EOF. However, all values of a type (e.g., int) might be
meaningful in a certain context, so no value is available
to encode the EOF indication. In such cases, one would be
forced to use solutions that are more cumbersome to use and
impose additional overhead (for example, dynamic memory
allocation with NULL pointer value representing EOF). We
have therefore extended channels by introducing support for
EOF indication: the sender can set the EOF status on the
channel when it has no more messages to send. After EOF
on the channel has been set, the receiver will be able to
read the remaining buffered messages. After all messages

6C++ is an inherently unsafe language, so there is no way of preventing
this.

33



have been read, the next call to the port’s recv method
will immediately return false (without changing the target
message buffer), and the next recv call will permanently
block the process.

C. Deadlock detection and resolution

Deadlock detection and resolution makes it possible to
execute KPNs in a finite space. Each time a process would
block, either on read or on write, a deadlock detection
routine is invoked. Since communication is 1:1, every cy-
cle of blocked KPs is a ring; a property which greatly
simplifies detection. The deadlock detection and resolution
algorithm in our current implementation uses a centralized
data-structure (the blocking graph) and thus must run while
holding a single global mutex. If no cycle is found, the KP
is blocked and this fact is recorded in the blocking graph.
Otherwise, the capacity of the smallest channel in the cycle
is increased by one, as suggested by [8]. Similarly, receiving
from a full channel unblocks the sending side and removes
the corresponding edge from the blocking graph.

D. Accounting

We have implemented a detailed accounting system that
enables us to monitor many different aspects of Nornir’s run-
time performance, such as cpu time used by each process,
number of context-switches, number of loop iterations in
waiting on spinlocks, number of process thefts, number of
messages sent to processes on the same or different CPU.
We have measured (see [6] for methodology) that a single
transaction consisting of [send → context switch → receive]
takes 1.4µs with accounting enabled. When accounting is
disabled, this time drops to ∼ 0.68µs. The largest overhead
in our accounting mechanism stems from the measurement
of per-process CPU time, which requires a system call
immediately before a process is run and immediately after
a process returns to scheduler.

IV. CASE STUDY: H.264 ENCODING

KPNs are especially well suited for stream-processing
applications. Indeed, each process is a function that takes
as input one or more input data streams and produces
one or more streams as output. H.264 is a modern, lossy
video-compression format that offers high compression rates
with good quality. Our KPN representation of an H.264
video encoder (see figure 2) is a slight adaptation of the
encoder block diagram found in [11], with functional blocks
implemented as KPs.

The input video consists of a series of discrete frames,
and the encoder operates on small parts of the frame, called
macroblocks, typically 16 × 16 pixels in size. The encoder
consists of “forward” and “reconstruction” datapaths which
meet at the prediction block (P). The role of the prediction
block is to decide whether the macroblock will be encoded

by using intra-prediction (relative to macroblocks in the cur-
rent frame Fn) or inter-prediction (relative to macroblocks
in the reference frame(s) Fn−1). The encoded macroblock
goes through the forward path and ends at the entropy coder
(EC), which is the final output of the encoder. The decision
on whether to apply intra- or inter-prediction is based on
factors such as the desired bandwidth and quality. To be able
to estimate quality, the codec needs to apply transformations
inverse to those of the forward path, and determine whether
the decoded frame satisfies the quality constraints.

This example demonstrates that feedback loops are not
only a matter of convenience, but actually essential for the
expressive power of a programming framework. Thus, as
already argued in the introduction, neither MapReduce nor
Dryad can be used to implement the H.264 encoder.

V. PERFORMANCE EVALUATION

To evaluate the performance and scalability of applica-
tions modeled as KPNs, we have used the H.264 KPN net-
work (see section IV and Figure 2), a random network and a
pipeline with artificial workloads, as well as AES encryption
with a real workload. The test programs have been compiled
as 64-bit with GCC 4.3.2 and maximum optimizations
(-m64 -O3 -march=opteron). All benchmarks have
been configured to use the work-stealing scheduling policy,
initial channel capacity of 64 messages. Nornir has been
compiled with accounting turned on, since this is necessary
to study performance effects of deadlock detection. We have
run them on an otherwise idle 2.6 GHz AMD Opteron
machine with 4 dual-core CPUs, 64 GB of RAM running
Linux kernel 2.6.27.3. Each data point is an average of
10 consecutive measurements of the total real (wall-clock)
running time. This metric is most representative because it
accurately reflects the real time needed for task completion,
which is what the end-users are most interested in.

A. Results

H.264: For the purpose of evaluation of Nornir, we
have used an artificial workload consisting of loops that
consume the amount of CPU time which are on average
used by a real codec in the different blocks. To gather
this data, we have profiled x264, an open-source H.264
encoder, with the cachegrind tool and mapped the results
to the H.264 block-diagram (see figure 2). The benchmark
“encoded” 30 frames at rate of 1 frame per second (fps), with
the number of workers varying from 1. . . 512 in successive
powers of two. From the results in figure 3 we can see that
the performance gets slightly better as the number of workers
per stage increases up to the number of CPUs, and remains
constant afterwards. The best achieved speedup on 8 CPUs
is only ∼ 2.8; this limitation is caused by data-dependencies
in the algorithm.

44



Fn ME ± T Q R EC

Fn−1 MC P

CIP IP + T−1 Q−1

0

1

n

Figure 2. H.264 block-diagram, adapted from the H.264 whitepaper [11]. Inputs to the codec are current and reference frames (Fn and Fn−1). Since P,
MC and ME blocks are together using over 50% of the total processing time and are perfectly parallelizable, we have parallelized each block by dividing
the work over n workers. The figure on the right exemplifies parallelization of a single block.

Work division

R
un

ni
ng

 ti
m

e 
(s

)

0

5

10

15

20

25

30

35

1 2 4 8 16 32 64 12
8

25
6

51
2

No. of CPUs

1

2

4

6

8

Figure 3. H.264: performance of “encoding” 30 frames at ∼ 1 fps.

Work division

R
un

ni
ng

 ti
m

e 
(s

)

0

20

40

60

80

17 18 19 20 21 22 23 24 25 26 27 28

No. of CPUs

1

2

4

6

8

Figure 4. AES encryption benchmark.

AES: The AES KPN has the same topology as the
network on the right in figure 2; this topology is in fact
common for algorithms that can process different chunks
of input independently. The source KP (denoted “0”) hands
out equally-sized memory chunks to n worker KPs (denoted
“1” . . . “n”) which reply back when they have encrypted
the given chunk. The exchanged messages are carrying only
pointer-length pairs (16 bytes in total).

In this benchmark, we have set the total block size to

228 bytes (256 MB), and the chunk given to each individual
worker has been varied from to 217 to 228 and the total
number of workers has been varied from 2048 to 1. The
number of encryption passes that each worker will perform
over its assigned chunk has been set to 40. The results,
shown in figure 4, show perfect linear speedup with the
number of CPUs, as soon as the number of workers becomes
greater or equal to the number of CPUs. Note that the
number of workers increases to the left in the figure, when
given work division w (x-axis), the number of workers
is 228−w. For w = 28 there cannot be any speedup on
multiple CPUs because there is only a single worker process
encrypting the whole chunk.

Random network: A random network is a directed
graph consisting of a source KP, a number of intermediate
KPs arranged in nl layers (user specified) and a sink KP. The
number of KPs in each layer is randomly selected between 1
and the user-specified maximum number m. The intention of
this construction is to mimic, with fine granularity, network
protocol graphs or parallelism in algorithms. The network
may have additional b back-edges which create cycles. Each
node is constrained to have at most one back-edge, be it
outgoing or incoming.

The workload of the random network is determined by the
formula nT/d, where n is the number of messages sent by
the source, T is a constant that equals ∼ 1 second of CPU-
time, and d is the work division factor. In effect, each single
message sent by the source (a single integer) carries a work
amount equalling approximately w = T/d seconds of CPU
time. The workload w is distributed in the network (starting
from the source KP) with each KP reading ni messages
from all of its in-edges. Once all messages are read, they
are added together to become the t units of CPU-time which
the KP is to consume before distributing t to its no forward
out-edges. Then, if a process has a back-edge, a message is
sent/received (depending on the edge direction) along that
channel. As such, the workload w distributed from the source
KP will equal the workload w collected by the sink KP.
Messages sent along back-edges do not contribute to the
network’s workload; their purpose is solely to generate more
complex synchronization patterns.

Figure 5(a) shows the absolute running times of a random

55



Work division

R
un

ni
ng

 ti
m

e 
(s

)

50

100

150

200

1 10 10
0

10
00

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

No. of CPUs

1

2

4

6

8

(a) Running time.

Work division

S
pe

ed
up

0

2

4

6

8

1 10 10
0

10
00

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

No. of CPUs

2

4

6

8

(b) Speedup over 1 CPU.

Figure 5. Benchmark of a random directed graph with 212 nodes, 333 edges and 13 cycles in 50 layers. The x-axis is not uniform.

Work division

D
D

 r
at

e 
(1

/s
)

50000

100000

150000

200000

250000

300000

1 10 10
0

10
00

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

No. of CPUs

1

2

4

6

8

Figure 6. Deadlock detection rate on the random graph benchmark.

graph with cycles at different values of d, whereas figure
5(b) shows speedup over running time on 1 CPU. In our
experiments, we have set n = d. As d increases to 100,
the available parallelism in the network increases, and the
running time decreases; in figure 5(b) we see that d = 100
achieves perfect speedup on multiple CPUs. At d = 1000,
running time starts increasing linearly with d, and grows
faster on more CPUs. This is caused by frequent deadlock
detections, as witnessed by figure 6 which shows the number
of started deadlock detections per second of running time.
Since deadlock detection uses a global lock to protect
the blocking graph, this limits Nornir’s scalability on this
benchmark. A possible way of avoiding this problem, in our
current implementation, is to increase default channel capac-
ity to a larger value. A long-term solution is implementing a
distributed deadlock detection and resolution algorithm [12].

Pipeline: A pipeline does the same kind of processing
as the random network, except that each layer has exactly
one process and each process takes its only input from the

Work division

S
pe

ed
up

0

2

4

6

8

8

10
00

10
00

0

10
00

00

128

10
00

10
00

0

10
00

00

512

10
00

10
00

0

10
00

00

2048

10
00

10
00

0

10
00

00

No. of CPUs

2

4

6

8

Figure 7. Pipeline speedup for message sizes of 8,. . . ,2048 bytes and three
different work divisions (d).

preceding process in the pipeline. In all previous bench-
marks, the communicated messages have been rather small
(less than 32 bytes). We have used a pipeline consisting of 50
stages to study the impact of message size on performance.
As previously, d messages have been generated by the
source process, each containing 1/d seconds of CPU time.
A noticable slow-down (see figure 7) happens regardless of
message size and only at d = 105, which is equivalent to
10 µs of work per message, which is only 7 times greater
than the time needed for a single transaction (see section
III-D). As expected, the drop in performance at d = 105

is proportional to message size, but also to the number of
CPUs. Larger message sizes take more time to copy, which
causes greater contention over channel locks with increasing
number of CPUs.

B. Summary

We have evaluated several aspects of Nornir: scalability
of the scheduler with number of processes and CPUs,

66



overheads of copying message-passing and overheads of
centralized deadlock-detection and resolution. Our findings
can be summarized as follows:

• Nornir can efficiently handle a large number of pro-
cesses. Indeed, in the AES benchmark, it achieved an
almost perfect linear speedup of 7.5 on 8 CPUs with
2048 processes.

• Message sizes up to 512 bytes have negligible impact
on performance. The cost of message copying starts to
be noticeable at message size of 2048 bytes. Protect-
ing channels with mutexes has negligible performance
impact on 8 CPUs.

• As shown by the pipeline benchmark, context-switch
and message-passing overheads start to have a no-
ticeable impact on the overall performance when the
amount of work per message is less than ∼ 7 times the
transaction time (see section III-D).

• The centralized deadlock detection and resolution al-
gorithm can cause serious scalability and performance
problems on certain classes of applications. In our
evaluation, this was the case only for the random graph
benchmark.

• Again, as shown by the random graph benchmark,
the default channel capacity of 64 bytes, which we
have used in our benchmark, can be too small in cer-
tain casses. Increasing it would mitigate overheads of
deadlock detection, but it would also increase memory
consumption.

• Performance can be further increased by turning off
detailed accounting in cases where it is not needed.

• We have not noticed any scalability problems with
using mutexes to protecting the scheduler’s queues
instead of using the non-blocking queue of [9].

Although there is room for improvement in Nornir (es-
pecially in deadlock detection), our results indicate that
message-passing and KPNs in particular are a viable pro-
gramming model for high-performance parallel applications
on shared-memory architectures.

VI. RELATED WORK

Very few general-purpose KPN runtime implementations
exist, among them YAPI [13] and Ptolemy II [14]. YAPI is
not a pure KPN implementation, as it extends the semantics
and thus introduces the possibility of non-determinism, its
code-base is too large for easy experimentation (120 kB vs.
50 kB in our implementation), and the implementation did
not have inherent support for multiple-CPUs. Ptolemy II is
a Java-based prototyping platform for experimenting with
various models of computation, and it spawns one thread
for each Kahn process, which is rather inefficient for large
networks. The amount of code that the JVM consists of
would make it prohibitively difficult to experiment with low-
level mechanisms, such as context-switches. PNRunner, a
part of the Sesame project [15], is an event-driven simulator

of embedded systems, which employs KPNs for application
modeling and simulation. As such, it is not suitable for
executing KPNs where performance is important.

Phoenix [3] is a MapReduce implementation optimized
for multi-core architectures. We have reimplemented word
count and k-means examples using Nornir, and found that
our implementation outperforms that of Phoenix by factors
of up to 2.7 and 1.7, respectively [7]. The main reason
for this is that, unlike MapReduce, KPNs allow us to
use algorithms and build a processing graph that are well
matched to the structure of the underlying problem.

StreamIt [16] is a language for simplifying implemen-
tation of stream programs described by a graph consisting
of computational blocks (filters) having a single input and
output. Filters can be combined in fork-join patterns and
loops, but must provide bounds on the number of produced
and consumed messages, so a StreamIt graph is actually a
synchronous dataflow process network [17]. The compiler
produces code which can exploit multiple machines or
CPUs, but their number is specified at compile-time, i.e.,
a compiled application cannot adapt to resource availability.

Pig latin [2] is a language for performing ad-hoc queries
over large data sets. Users specify their queries in a high-
level language which provides many features of operators
found in SQL. Unlike SQL, which is declarative and heavily
relies on query optimizer for efficient query execution, Pig
latin allows users to precisely specify how the query will
be executed. In effect, users are constructing a dataflow
graph which is then compiled into a pipeline of MapReduce
programs and executed on a Hadoop cluster, which is an
open-source, scalable implementation of MapReduce. All
of the Pig latin operators, such as FILTER and JOIN,
are directly implementable as Kahn processes. Taking our
experimental results [7] into consideration, we believe that
compiling Pig latin programs into Nornir graphs would be
advantageous for their performance on multi-core machines.

VII. CONCLUSION AND FUTURE WORK

In this paper we have described implementation details
of Nornir, our run-time environment for executing parallel
applications specified in the high-level framework of Kahn
process networks, which allow cycles in the communication
graph of the program. Since this feature is crucial for imple-
menting iterative algorithms such as H.264 encoding, Nornir
complements existing frameworks such as MapReduce and
Dryad.

We have evaluated Nornir’s efficiency with several syn-
thetic (H.264 encoding, random KPN, pipeline) and one
real (AES) application on an 8-core machine. Our results
indicate that Nornir can scale well, but that in certain cases
(random KPN) the centralized deadlock detection is detri-
mental for performance, and that default channel capacity
of 64 bytes is too small for some applications. We have
also found that copying semantics of message-passing starts

77



having a slight, but noticeable impact on performance at
message sizes of ∼ 2048 bytes. Furthermore, Nornir can
support parallelism at fine granularity: its overheads become
noticeable at processing time of 10µs per message, which is
∼ 7 times greater than the combined overhead of scheduling
and message-passing.

The first, and most important, step in our future work
is increasing Nornir’s scalability by replacing a centralized
deadlock detection algorithm with a a distributed one [12].
This will also be the first step towards a distributed version
of Nornir, executing on a cluster of machines. Further
performance increases can be gained by using non-blocking
data structures. In the scheduler, we might need to use the
non-blocking queue of [9] instead of mutexes in order to
support scalability beyond 8 CPUs. We might also use a
single-producer, single-consumer FIFO queue [18] to avoid
yielding between en-/dequeue attempts. Since yielding in-
curs switching to new control flow and new stack, we expect
that this improvement will further increase performance by
reducing pressure on data and instruction caches.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: simplified data
processing on large clusters,” in Proceedings of Symposium
on Opearting Systems Design & Implementation (OSDI).
Berkeley, CA, USA: USENIX Association, 2004, pp. 10–10.

[2] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins,
“Pig latin: a not-so-foreign language for data processing,”
in SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD
international conference on Management of data. New York,
NY, USA: ACM, 2008, pp. 1099–1110.

[3] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis, “Evaluating MapReduce for multi-core and
multiprocessor systems,” in Proceedings of the IEEE Inter-
national Symposium on High Performance Computer Archi-
tecture (HPCA). Washington, DC, USA: IEEE Computer
Society, 2007, pp. 13–24.

[4] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building
blocks,” in Proceedings of the ACM SIGOPS/EuroSys Eu-
ropean Conference on Computer Systems. New York, NY,
USA: ACM, 2007, pp. 59–72.

[5] G. Kahn, “The semantics of a simple language for parallel
programming.” Information Processing, vol. 74, 1974.

[6] Željko Vrba, P. Halvorsen, and C. Griwodz, “Evaluating
the run-time performance of Kahn process network imple-
mentation techniques on shared-memory multiprocessors,” in
Proceedings of the International Workshop on Multi-Core
Computing Systems (MuCoCoS), 2009.

[7] Željko Vrba, P. Halvorsen, C. Griwodz, and P. Beskow, “Kahn
process networks are a flexible alternative to MapReduce,”
in Proceedings of the International Conference on High
Performance Computing and Communications, 2009.

[8] M. Geilen and T. Basten, “Requirements on the execution
of kahn process networks,” in Programming Languages and
Systems, European Symposium on Programming (ESOP).
Springer Berlin/Heidelberg, 2003, pp. 319–334.

[9] N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread
scheduling for multiprogrammed multiprocessors,” in Pro-
ceedings of ACM symposium on Parallel algorithms and
architectures (SPAA). New York, NY, USA: ACM, 1998,
pp. 119–129.

[10] U. Catalyurek, E. Boman, K. Devine, D. Bozdag, R. Heaphy,
and L. Riesen, “Hypergraph-based dynamic load balancing
for adaptive scientific computations,” in Proc. of 21st In-
ternational Parallel and Distributed Processing Symposium
(IPDPS’07). IEEE, 2007, also available as Sandia National
Labs Tech Report SAND2006-6450C.

[11] I. E. G. Richardson, “H.264/mpeg-4 part 10 white pa-
per,” Available online., http://www.vcodex.com/files/h264
overview orig.pdf.

[12] G. Allen, P. Zucknick, and B. Evans, “A distributed deadlock
detection and resolution algorithm for process networks,”
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), vol. 2, pp. II–33–II–36, April
2007.

[13] E. de Kock, G. Essink, W. J. M. Smits, R. van der Wolf, J.-Y.
Brunei, W. Kruijtzer, P. Lieverse, and K. Vissers, “Yapi: appli-
cation modeling for signal processing systems,” Proceedings
of Design Automation Conference, pp. 402–405, 2000.

[14] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao,
and H. Zheng, “Heterogeneous concurrent modeling and
design in java (volume 1: Introduction to Ptolemy II),”
EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2008-28, Apr 2008. [Online].
Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/
EECS-2008-28.html

[15] M. Thompson and A. Pimentel, “Towards multi-application
workload modeling in sesame for system-level design space
exploration,” in Embedded Computer Systems: Architectures,
Modeling, and Simulation, vol. 4599/2007, 2007, pp.
222–232. [Online]. Available: http://www.springerlink.com/
content/u4265u6r0u324215/

[16] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting
coarse-grained task, data, and pipeline parallelism in stream
programs,” in ASPLOS-XII: Proceedings of the 12th interna-
tional conference on Architectural support for programming
languages and operating systems. New York, NY, USA:
ACM, 2006, pp. 151–162.

[17] E. Lee and T. Parks, “Dataflow process networks,” Proceed-
ings of the IEEE, vol. 83, no. 5, pp. 773–801, May 1995.

[18] J. Giacomoni, T. Moseley, and M. Vachharajani, “FastForward
for efficient pipeline parallelism: a cache-optimized concur-
rent lock-free queue,” in PPoPP: Proceedings of the ACM
SIGPLAN Symposium on Principles and practice of parallel
programming. New York, NY, USA: ACM, 2008, pp. 43–52.

88


