

Intrusion-Tolerant Membership
Management for Peer-to-Peer

Overlay Networks

Håvard Dagenborg Johansen

A dissertation for the degree of Philosophiae Doctor

UNIVERSITY OF TROMSØ
Faculty of Science

Department of Computer Science

November 2007

Copyright c© 2007 H̊avard Dagenborg Johansen

ISBN 978-82-92461-69-3

Abstract

Peer-to-Peer (P2P) computing has emerged as a cost-effective approach for
constructing large-scale wide-area Internet services. Many generic P2P mid-
dleware platforms, known as overlay networks, do already exist. Because
overlay networks are deployed on untrusted hardware, an attacker can gain
control of internal system components simply by joining. Consequently, over-
lay networks should be constructed such that they are not easily corrupted
by maliciously induced Byzantine faults. For this, overlay networks must
implement mechanisms for intrusion-tolerant membership management.

This dissertation describes Fireflies , a novel intrusion-tolerant member-
ship management protocol. Fireflies fights membership attacks by organizing
members in a strict and verifiable pseudo-random structure such that an at-
tacker can not falsely modify the membership views of correct members. By
providing each correct member with an up-to-date view of all members, Fire-
flies avoids the overhead associated with multi-hop routing in strict overlay-
network structures. This dissertation also describes Fire, an overlay-network
framework that implements the Fireflies protocol. As a case study on the
applicability of our solution, this dissertation describes FirePatch, a novel
secure dissemination network for software patches. FirePatch enables soft-
ware vendors and end-users to fight hackers that reverse-engineer software
security patches into automated exploits.

We evaluate our findings using both simulations and PlanetLab. Our
solution provides a novel tradeoff between scalability and intrusion tolerance
and is applicable in many overlay networks.

i

ii

Acknowledgements

I am grateful for all those that have provided me with support and inspiration
through the strenuous course of completing this dissertation. Family, friends,
and colleagues have all made their contributions.

In particular, I would like to thank the following: Prof. Dag Johansen for
being my advisor, for providing insight, motivation, and inspiration, and for
authoring three papers with me [77, 80, 81]; Principal Research Scientist Rob-
bert van Renesse at Cornell University for collaborating and supervising me
on the problems and solutions that form this dissertation, for authoring three
papers with me [77, 79, 80], and for helping me out in every other way;
Dr. André Allavena for working with me on the paper that forms the core of
this dissertation [79]; Prof. Fred B. Schneider for inviting me to work at Cor-
nell University for a year, which had a profound impact on this dissertation;
and Åge Kvalnes for reading the drafts of this dissertation and providing
me with valuable feedback. Special thanks to my ever so patient girlfriend
Leila I. Johansen for her faithful loving support.

This work has been founded by the Research Council of Norway ikt 2010
program. The material needed for my daily activates, including an office to
work in, a computer to work on, and administrative support, have been
provided by the Department of Computer Science, University of Tromsø,
Norway.

iii

iv

Table of Contents

Acknowledgements iii

Table of Contents v

List of Figures ix

1 Introduction 1

1.1 Peer-to-Peer Computing . 2

1.2 Research Issues . 3

1.2.1 Preventing Attacks . 4

1.2.2 Tolerating Attacks . 4

1.2.3 Thesis Statement . 6

1.2.4 Scope and Limitations 7

1.3 Assumptions . 8

1.4 Methodology . 9

1.4.1 Disciplines in Practice 10

1.4.2 PlanetLab Experiments 10

1.4.3 Context of this Dissertation 11

1.5 Summary of Contributions . 11

1.6 Outline of the Dissertation . 12

2 Overlay Networks 13

2.1 Current Systems and Protocols 13

2.1.1 Search Networks . 13

2.1.2 Content-Addressable Networks 17

2.1.3 Content-Distribution Network 21

2.1.4 Storage Networks . 23

2.2 General Model . 25

2.2.1 Definition . 25

2.2.2 Functional Components 27

v

3 Design Rationale 31
3.1 Key Design Requirements . 31
3.2 Identity Assignment . 32
3.3 Topology Management . 33
3.4 Messaging . 35

4 The Fireflies Membership Management Protocol 39
4.1 Protocol Overview . 39
4.2 Certificate Authority . 40

4.2.1 Certificates . 40
4.2.2 Bounds on the Fraction of Byzantine Members 42
4.2.3 Revoking Certificates 42

4.3 Member Rings . 43
4.3.1 Formal Definitions . 44
4.3.2 The Probability of Having a Correct Monitor 45
4.3.3 Disabling Byzantine Monitors 46

4.4 Data Structures . 47
4.5 Valid Accusations . 49
4.6 Blocked Accusations . 50
4.7 Failure Detection . 51

4.7.1 Setting the Time-out Threshold τ 52
4.7.2 Rounding Error . 53
4.7.3 Estimating Packet-Loss Rate 55
4.7.4 Threshold Limits . 56
4.7.5 Pinging Attacks . 56

4.8 Gossip . 57
4.8.1 Ensuring Connectivity 57
4.8.2 Pseudo-Random Mesh 58
4.8.3 Time-out value ∆ . 58
4.8.4 Communication Efficiency 59

4.9 Protocol Steps . 60

5 FiRE: The Fireflies Runtime Environment 63
5.1 Overview . 63
5.2 Global Data Structures . 65

5.2.1 Configuration Options 65
5.2.2 Data Objects . 66
5.2.3 Member Object . 68

5.3 Main Functionality . 69
5.3.1 Joining a Group . 69
5.3.2 Events . 70

vi

5.3.3 Functions . 72
5.4 Internal Issues . 73

5.4.1 Membership Rings . 73
5.4.2 Gossip . 74
5.4.3 Adaptive Pinging Protocol 76

6 Evaluation 79
6.1 Simulations . 79

6.1.1 Overhead of Membership Maintenance 81
6.1.2 The Effect of Byzantine Members 83

6.2 PlanetLab . 85
6.2.1 Experimental Setup . 85
6.2.2 Measurement Study . 86
6.2.3 Network Performance 92

7 Case Study: Disseminating Software Updates 95
7.1 Background and Related Work 95
7.2 Architecture and Assumptions 97
7.3 Two-Phase Dissemination . 98
7.4 Secure Dissemination Overlay 99

7.4.1 Mirror Mesh . 100
7.4.2 Data Dissemination . 100
7.4.3 Disconnected Nodes 102

7.5 Evaluation . 102

8 Discussion 109
8.1 Membership Management . 109

8.1.1 No Membership . 109
8.1.2 Partial Membership . 110
8.1.3 View-Synchronous Membership 111
8.1.4 Weakly-Consistent Membership 115

8.2 Timing Attacks . 116
8.2.1 Violation of Timing Bounds 117
8.2.2 Weaker Models of Synchrony 117

8.3 Applicability . 118
8.3.1 One-Hop Distributed Hash Table 119
8.3.2 Multimedia Streaming 119

9 Conclusions 121
9.1 Results . 121
9.2 Future Work . 124

vii

A Publications 127

References 129

Abbreviations 147

viii

List of Figures

1.1 Member state diagram . 5

2.1 Search in the Napster protocol 14
2.2 Search in the Gnutella protocol 15
2.3 Pastry routing example . 19
2.4 Can routing example . 20
2.5 Overlay-network model . 26
2.6 Functional components of overlay networks 27
2.7 Topology management functions 29

3.1 Undesirable overlay topologies 34
3.2 Locality in multi-hop overlay network routing 35
3.3 Required path diversity for multi-hop routing 37
3.4 Messaging overhead due to multi-hop routing 37

4.1 The Fireflies membership protocol 40
4.2 The role of the certificate authority 41
4.3 Fireflies mesh with three rings 43
4.4 Fireflies membership ring . 44
4.5 Algorithm for computing the required number of rings 47
4.6 Required number of rings . 48
4.7 Basic Fireflies member structure 49
4.8 Example of valid and invalid accusations 50
4.9 The likelihood of blocked accusations 51
4.10 Failure detection threshold τ as a function of packet loss . . . 53
4.11 The effect of rounding error on adaptive pinging 54
4.12 Adapting timeout threshold to packet loss rate 56
4.13 Number of rounds required to disseminate an update 60

5.1 Architectural overview of Fire 64
5.2 Configuration options . 66
5.3 Fire data structures . 67

ix

5.4 Fire member object . 69
5.5 A Fire service that registers to receive neighbor events 73
5.6 Pseudo-code for ring operations 74
5.7 Gossip of accusations, notes, and certificates 75
5.8 Adaptive Pinging Protocol . 76

6.1 Simulated network overhead for varying packet-loss rates . . . 82
6.2 Simulated network overhead when under attack 84
6.3 Live members . 87
6.4 Rate of timeouts . 87
6.5 Aggregate rate of membership events on PlanetLab 89
6.6 Observed churn on PlanetLab 90
6.7 Network performance on PlanetLab 92

7.1 Cleartext dissemination . 99
7.2 Two-Phase dissemination . 99
7.3 Pseudo-code for the FirePatch dissemination protocol 101
7.4 Effect of the block size on dissemination 103
7.5 Time to complete phase-one 104
7.6 Time to complete phase-two 105
7.7 Reduction in the Window of Vulnerability due to two-phase

dissemination . 105
7.8 Comparison with näıve pull and push 106
7.9 Dissemination on PlanetLab 106

9.1 The Fireflies overlay-network stack 123

x

Chapter 1

Introduction

Internet services must accommodate an increasing load as their popularity
and complexity grow. Although hardware utilization can be made more
efficient with careful implementation, there are limitations. At some point
scaling up means adding hardware components like cpu, disk, and memory.
Cheap commodity class computers have proven themselves capable for this
task and are widely available. For instance, in 2003 the popular Google
web search service was estimated to run on a cluster of more than 15000
commodity class pcs [14]. The expense to acquire, setup, and maintain such
a centralized system is, however, beyond the capability of most people and
organizations.

An alternative approach to providing scalable Internet services emerged
in 1999 with the Napster application [65]. Napster was a distributed file
sharing application that specialized on music files. The application gave
home users all over the world the ability to connect with one-another and
share music files. Napster became hugely popular. During a four day period
in May 2006, the service was visited by more than a half-million users [130].
Indeed, distributing digital content like music and video through file sharing
networks has become so popular that international legislation and politics
have been changed in order to protect the revenue of traditional content
distribution businesses.

Although Napster used a centralized server to implement search, its nov-
elty was that file transfers were done directly between clients machines. Com-
pared to strict client-server architectures, Napster could therefore accommo-
date a larger number of users and a larger number of file transfers with less
bandwidth and less disk capacity at the central location.

While Napster quickly ran into legal problems with the music distribution
industry, and was soon shut down in a flurry of lawsuits, it became apparent
that useful and scalable applications could be built by utilizing resources

1

available on the home-user’s computers. This became known as Peer-to-
Peer (P2P) computing [108].

1.1 Peer-to-Peer Computing

The fundamental ideas in P2P computing are architectural symmetry and peer
cooperation. In order to provide a common service, each participating com-
puter acts both as a client and as a server and is willing to share its resources
with other members in order to provide a common service to all members.
This idea was certainly not new at the time Napster was released. Indeed,
the Internet itself and many of its long time services, like the Domain Name
System (DNS) and the Usenet, are founded upon the same principle. Still,
there is one important difference, that of deployment. A P2P system does not
run on dedicated computers under the control of professional administrators.
Instead, a P2P system runs on the edge of the Internet: on the personal com-
puters, laptops and desktops, owned primarily by laymen. These computers
represent a vast pool of resources. For instance, by May 2006, 84 million
households were connected to the Internet [75] in the usa alone. Of these,
42% had high-speed broadband connections.

Although harvesting these hardware resources is useful, it is also challeng-
ing. For instance, P2P systems are generally highly accessible in that anyone
with an Internet connection can participate. There are no predefined set of
members. Instead, members join and leave the system continuously. Conse-
quently, P2P systems must organize themselves dynamically as membership
composition and load changes. The number of members can grow from a
few to thousands. Thus, P2P systems must also be scalable. Participating
machines are often located in different countries and on different continents.
This leads to a high-level of geographical dispersion, and so P2P systems suf-
fer from higher end-to-end latency and lower bandwidth capacity between
system components compared to that of centralized solutions. This property
is at odds with the property of architectural symmetry because symmetry
disallows members to be specialized into functional classes in order to opti-
mize system functionality. Symmetry is further complicated by the inherent
heterogeneity of the computers of the home-users in that they have varying
resources available to share, including the size of their disk, their processor
speeds, and their network bandwidth. Although available resources vary,
there are few, if any, members with sufficient resources to provide an accept-
able level of service to all members. All functions in the critical path of the
system is therefore decentralized.

Although P2P computing is challenging, many applications and systems

2

have been constructed. After the initial wave of file-sharing applications,
generic middleware platforms for P2P computing emerged. These are known
as P2P overlay networks, or overlays.1

Overlay networks have become a subject of interest to both system de-
signers and researchers since they allow the Internet to be extended with
a wide range of services by performing packet processing and routing in
processes running on client machines. For instance, Cododns [115], Over-
look [144], and Ddns [39] are overlay networks that provide efficient and
scalable name services; SplitStream [24], Bullet [90], and Chainsaw [109] are
content distribution networks that achieve high throughput by spreading the
data forwarding load amongst the clients; Azureus [27], BearShare [106], and
KaZaa [74] are file-sharing networks with a large user base.

1.2 Research Issues

The Internet has attracted a non-negligible level of criminal activity [64].
Overlay networks are likely to be targeted due to their accessible, decentral-
ized, and cooperating nature. Hence, to be dependable and secure, overlay
networks must implement mechanisms that enable them to uphold their spec-
ified functions even when under attack.

In general, an overlay network can be subject to three kinds of attack [10]:

• Denial-of-Service (DoS) attacks, which aim at slowing down or halting
a service.

• Correctness attacks, which aim at breaking the correctness of the de-
livered service such that it does not behave as intended.

• Confidentiality attacks, which aim at leaking information to parties that
otherwise would not receive it.

Because attacks can be seen as malicious and intentional failures, the means
to fight them fall within the following two categories [10]:

• Fault prevention, which are means to prevent faults from being intro-
duced into the system.

• Fault tolerance, which are means to recover from errors such that they
do not cause system failure.

1For brevity we will in the remainder of this dissertation leave out the adjective P2P

where obvious and use the terms overlay networks and overlays interchangeably.

3

We will in the following describe both categories and identify fault tol-
erance by masking arbitrary, or Byzantine failures [93, 110], as the topic of
this dissertation.

1.2.1 Preventing Attacks

Fault prevention techniques can mitigate a large number of attacks. For
instance, good engineering practices and good programming skills can ensure
that a system is resilient to corrupted messages. High-level programming
languages can prevent common software flaws like unchecked array bounds.

Still, the accessible and open nature of overlay networks make them sus-
ceptible to Byzantine failures. This is because an attacker can gain control
of the software and hardware stack of one or more overlay members simply
by joining. Once in control, an attacker is free to generate arbitrary failures.
He might for instance, omit storing data, forge messages, claim that other
members have failed, or impersonate other members. In this case, we say
that the attacker has intruded into the system. Other means for intruding
include installing Trojan programs and exploiting software vulnerabilities in
existing members [9].

Authentication and authorization schemes are inefficient in preventing
overlay-network intrusions because participating machines are owned by hu-
mans without pre-established trust relationships. As such, members can not
in general ascertain the intent and level of cooperation of other overlay mem-
bers. In addition, an attacker might be able to circumvent established trust
relationships by gaining control of network endpoints or by stealing secret
cryptographic keys.

Mechanisms to externally verify the integrity of the software and hardware
stack could prevent an intruder from inducing Byzantine failures. However,
such mechanisms either assume the universal presence of a tamper resistant
hardware device [60, 61] or assume that packet latencies are predictable [132].
Neither are realistic in the current wide-area Internet. Also, DoS attacks can
not be prevented altogether in the current Internet infrastructure because
overlay members can not prevent an attacker from sending large amounts of
data.

1.2.2 Tolerating Attacks

Attacks that can not be prevented must be tolerated. Techniques within
fault-tolerant computing fall within the following categories:

• Error detection, which are means to detect the presence of errors.

4

Non
Member

Member

Crashed

Live

Correct Byzantine

join

leave

churn ?

Figure 1.1: Member state diagram

• Error handling, which are means to eliminate errors from the system
state.

• Fault handling, which are means to prevent faults from occurring more
than once.

Since some attacks, like omission and forgery attacks, are hard to detect,
they can not easily be removed by excluding the attacker from the overlay
network. Also, the lack of a central component complicates error handling
techniques like roll-back and roll-forward. Hence, to be fault tolerant, overlay
networks must be able to mask errors such that they do not result in system
failure. In particular, overlay networks must tolerate Byzantine failures due
to the possible presence of an attacker.

We define an overlay network to be intrusion tolerant if it employs mecha-
nisms that mask Byzantine failures. In such systems, processes may join the
overlay becoming members, and existing members may permanently leave, as
shown in Figure 1.1. Each member has a state that is either correct, crashed,
or Byzantine. Correct members faithfully execute the specified overlay pro-
tocol, while crashed members do not execute any protocol steps. Byzantine
members are not bound by the protocol and might execute arbitrary instruc-
tions. We refer to members that are either correct or Byzantine as live.
Members might switch between live and crashed state, which is commonly
referred to as churn. Also, correct members might be unreachable and ap-
pear crashed to other members due to transient network outages. Byzantine
members can disguise themselves as correct members by executing the proto-
col, or as crashed members by not executing at all. Hence, correct members
can not in general determine which members are Byzantine unless they re-
veal themselves as such by sending messages that prove that they are not
following the protocol.

5

1.2.3 Thesis Statement

The high level of redundancy and the geographical dispersion, which are
often present in overlay-networks, lend themselves naturally to fault masking.
Many existing overlay structures leverage this to achieve a high tolerance to
benign faults in a scalable manner [31, 116, 127, 140, 155]. These systems do
not address intrusion-tolerance, which leads us to the overall problem that
motivate this dissertation:

Can P2P overlay networks be made intrusion tolerant while, at
the same time, efficiently support thousands of members?

Several recent papers have addressed the problem of Byzantine failures
within P2P overlay networks [22, 50, 117, 134, 135, 138]. A key observation
is that an attacker can gain complete control of such networks if he is able to
target the mechanism that maintains membership information. Such mem-
bership attacks include falsely claiming that a correct member has crashed,
falsely claiming that a crashed member is live, and falsely modifying over-
lay link topology such that correct members prefer communicating with the
attacker [22, 134].

An effective defense against membership attacks is to organize members
in a strict random structure. This prevents an attacker from freely choosing
his targets or focus his attacks on certain members [22, 134]. However, im-
posing such a rigid random structure prevents members from self organizing
into topologies that are optimal according to runtime metrics like network
proximity [23, 67]. As such, overlay routing structures that depend on struc-
tural flexibility to optimize end-to-end messaging delays are at odds with
structural defenses.

By maintaining at each member a full view of all overlay members, mes-
sages can be sent directly to their destinations, avoiding the need for struc-
tural flexibility. Such full membership protocols have been shunned in the
past as building blocks for overlay networks because of their inherent sensitiv-
ity to the increase in churn that follows from a growing number of members.
A recent study has contradicted this argument and shown that, in many
overlay networks, maintaining full membership is both possible and desir-
able [124]. Increased availability of broadband Internet access [75] might
also reduce churn rate.

Full membership protocols that provide agreement on membership views
have been extensively researched within the context of multicast oriented
Group Communication Systems (GCSs) [33, 44]. Variants of such protocols
that tolerate Byzantine failures have been constructed [26, 87, 100, 118]. Un-
fortunately, the overhead of consensus makes these protocols unscalable [69].

6

Performance evaluations of such systems typically operate with group sizes
from four to a few dozen [26, 119, 156].

Full membership protocols that do not provide agreement on the mem-
bership views are more scalable and can be used in wide-area Internet envi-
ronments [8, 42, 55, 68]. We conjecture that it is possible to extend these
weakly-consistent full membership protocols with structural constraints to
achieve a novel tradeoff between scalability and intrusion-tolerance that is
well suited for overlay-network. The thesis of this dissertation is that:

Using epidemic techniques it is possible to build overlay networks
and peer-to-peer systems that strike a useful balance between intrusion-
tolerance and resource usage.

To evaluate our thesis, this dissertation will devise a membership manage-
ment protocol suitable for intrusion-tolerant overlay networks. The following
properties will be used to measure the level of success:

• Scalability. We must show that our protocol can support overlay struc-
tures with thousands of members. We conjecture that there is signif-
icant overhead associated with fighting membership attacks, so we do
not expect that our solution will be able to match the efficiency of pro-
tocols that assumes only benign failures. Still, our protocol must be
sufficiently efficient such that it can be used within the constraints of
current wide-area Internet network technologies.

• Intrusion-tolerance. We must show that our protocol can maintain
membership information when under attack.

• Applicability. We must design and implement a proof-of-concept system
based on our membership protocol and show that useful overlay services
can be built on top of it.

1.2.4 Scope and Limitations

We limit the scope of this dissertation to the masking of operational (run-
time) Byzantine faults and to protocol-level DoS attacks. In particular, this
dissertation does not address the following:

• Attacks on system confidentiality.

• Development faults like software bugs and logic bombs.

• An extremely powerful attacker like government institutions (e.g., in-
formation warfare).

7

• Attacks that indirectly affect an overlay network.

As such, we do not consider attacks on systems and services co-located
with the overlay network. This includes attacks that exhaust local bandwidth
by targeting other service located on the same subnet as one or more overlay
members. Also, we do not consider attacks on the software repository, human
operators, or the social structures in which the overlay network resides.

1.3 Assumptions

An attacker might successfully attack a system if he is able to negate the
assumptions of that system. We therefore make few assumptions on the
capabilities of an attacker. We allow Byzantine members to collude and
share state. They might also know the state of correct members. Byzantine
members might be connected through high bandwidth low latency links and
might be running on the same computer as other members. We do, however,
make the following assumptions:

• We assume that Byzantine members do not have sufficient computa-
tional power to break cryptographic building blocks. In particular, we
assume that they can not forge public key certificates, or public key
signatures of correct or crashed members.

• We assume that there is a bounded uniform probability Pbyz that a live
member is Byzantine. This is a stronger condition than a bound on the
probability that any member is Byzantine. Such a weaker condition
would not suffice, as in the case that most non-Byzantine members are
crashed, the few remaining correct members could be overwhelmed by
Byzantine members. Nonetheless, the assumption that among all live
members only a fraction is Byzantine is reasonable, particularly since
we do not limit the fraction of crashed members among all members.

• We also assume that trivial DoS attacks like flooding can be detected
and suppressed using techniques like port randomization, careful re-
source management, and rate limiting [11].

• We assume correct members have access to clocks running with a
bounded difference to real time.

• We assume synchronous communication between correct members.

8

1.4 Methodology

The scientific method is a collection of techniques for gaining new knowl-
edge about naturally occurring phenomenas. A commonly used technique is
the hypothetical-deductive method, where the predictions of a hypothesis are
checked against experimental observation. If experimental data correspond
with predictions, the hypothesis is strengthened. If not, the hypothesis is
falsified and must either be discarded or modified.

Although computer systems are human made and not naturally occur-
ring, computer science meets every criterion for being a science [45]. The
methods of computer science are commonly divided into the three following
disciplines [46]:

• Design, rooted in engineering.

• Theory, rooted in mathematics.

• Abstraction, rooted in experimental methodology.

In the discipline of design, a system is systematically constructed to solve
specific problems. First, requirements describing the functional and non-
functional aspects of the system are stated. Next, the system is specified,
designed, and implemented such that it fulfills the stated requirements. The
construct is tested to check whether or not it meets the requirements.

In the discipline of theory, the objects of study are clearly defined such
that hypotheses about how they relate to one another can be proved using
logical reasoning. Studied objects can, for instance, be processes that ex-
change messages in an asynchronous communication network. How these
processes relate to one another is specified with an algorithm. Using logical
reasoning, hypotheses about such algorithms can be proven. Theoretic com-
puter science often draws upon theorems and lemmas from the fields of pure
mathematics and statistics, including graph and number theory.

In the discipline of abstraction, a model is deducted from hypotheses
about observable objects or phenomenas. The predictions of the model are
then compared to experimentally collected data. An incorrect prediction fal-
sifies the initial hypothesis. If the predictions corresponds with observations,
the hypothesis is strengthened. Observable objects of study include running
systems like database systems and Internet applications. Abstraction has
similarities to the scientific disciplines within natural sciences like biology,
physics, and chemistry because their goal is to gain knowledge about the
rules and laws that govern the behavior of observable objects.

9

1.4.1 Disciplines in Practice

As argued by Dennings et al. [46], the three disciplines of computer science
are so intertwined that it is hard to separate one from the other. This
dissertation therefore draws, to some extent, upon all three disciplines.

For instance, within the discipline of design, we have specified, designed,
implemented, and tested a runnable system. The initial requirements for our
system were synthesized by surveying existing overlay-network systems and
from results within the research literature. Several iterations of the design
process were conducted, leading to the system in its current incarnation, as
described in this dissertation. Our implementation acts as a proof-of-concept
that strengthens our thesis.

Within the discipline of theory, we have devised an overlay structure
and process relations that provide properties that are beneficial to intrusion-
tolerant overlays networks. These properties follows by logical reasoning
from our assumptions. To support our claims, we use established mathemat-
ical theorems. In particular, we use sound statistical reasoning to deduct
properties of the stochastic processes within our system.

Within the discipline of abstraction, we have observed the behavior of
our system when running in a simulated environment that models aspects of
expected deployment scenarios. Such simulations allow us to reason about or
system when all factors are predictable and known. We have done simulations
on the system as a whole, and with certain parts in isolation. The goals of
our experiments were to verify that the system behave as expected.

1.4.2 PlanetLab Experiments

Ideally, the completed system would be observed within a real deployment
scenario with real users and real load. Unfortunately, such an environment
was not available to us. As an alternative, we ran our system in the PlanetLab
test-bed [7, 111, 112], which allows us to observe the basic behavior of our
system in a wide-area Internet setting.

In essence, PlanetLab is a world-wide collection of machines that are
made available to scientists and organizations for the purpose of testing new
scalable protocols and for deploying novel distributed services. By Febru-
ary 2006, PlanetLab contained over 600 machines at over 275 sites connected
to the Internet in 30 countries. Because PlanetLab machines communicate
through the Internet, network latency and bandwidth are affected by con-
current Internet traffic. Also, multiple services and experiments run concur-
rently on the individual PlanetLab machines, all affecting one another.

Because of this unknown concurrent load, PlanetLab experiments are not

10

considered reproducible [136]. Although this diminishes their scientific value,
we consider our PlanetLab experiments important because they are strong
indicators of how our system would behave in a real deployment scenarios.

1.4.3 Context of this Dissertation

This dissertation has been written as part of the Wide-Area Information
Filtering (WAIF) project at the University of Tromsø, Norway. The overall
goal of the WAIF project has been to construct an infrastructure for support-
ing the next generation Internet applications [78]. Its focus has been on issues
like pervasive access to computing infrastructure [152], personalization, and
high-level push-based communication.

From its infancy, the WAIF project conjectured that the P2P computing
paradigm would play a key role [81]. Security issues was at first mostly
ignored. It is from that context the topic of this dissertation emerged. Our
methods and our subsequent results have been shaped and inspired by the
WAIF project.

1.5 Summary of Contributions

This dissertation makes the following contributions:

• We have devised Fireflies : a novel membership management protocol
that provides to each member an up-to-date view of all members. The
views of correct members are made robust to membership attacks using
a combination of epidemic dissemination, adaptive pinging, and a strict
pseudo-random overlay-network structure. Fireflies ensures, with high
probability, that all members are monitored by at least one correct
member. At the same time, members can thwart high-level DoS attacks
by disabling Byzantine monitors.

• We have designed and implemented Fire: a framework that enables
intrusion-tolerant overlay networks to be constructed. Fire provides
intrusion-tolerant membership management by implementing the Fire-
flies membership protocol. We have evaluated Fire in a simulated
environment and on PlanetLab with groups of up to 280 members and
with as many as 20% executing membership attacks. Measured over-
head on PlanetLab indicates that Fire can support overlay network
with thousands of members.

11

• We have designed, implemented, and evaluated FirePatch: a novel se-
cure software-patch dissemination overlay network built using Fire.
FirePatch enables software vendors and end-users to fight hackers that
reverse engineer software security patches into automated exploits.

Our approach provides a novel tradeoff between intrusion-tolerance and scal-
ability that we find suitable for implementing overlay networks.

1.6 Outline of the Dissertation

In this chapter, we have motivated the research agenda for this disserta-
tion. We have stated our thesis, discussed our methods, and summarized our
contributions. The remainder of this dissertation is structured as follows:

• Chapter 2 defines the the concept of overlay networking as used in
this dissertation. We do this by first describing several existing over-
lay networks, then we generalize these into a common overlay-network
model.

• In Chapter 3 we state three design requirements for intrusion-tolerant
overlay networks. We argue that solving all three is critical for the
ability of an overlay network to tolerate intrusions. The design require-
ments therefore form the rationale for our later design.

• Chapter 4 presents Fireflies , our group membership protocol built to
meet the design requirements in Chapter 3. Fireflies prevents an at-
tacker from modifying membership information to his advantage.

• Chapter 5 describes the implementation of Fire, our framework for
constructing scalable and intrusion-tolerant overlay networks based on
the Fireflies protocol.

• Chapter 6 presents evaluations of Fire that we have conducted using
a simulated network environment and PlanetLab.

• As a case study on how Fire can be used to solve a real and important
problems, Chapter 7 describes FirePatch, a software patch distribution
overlay.

• In Chapter 8 we discuss our findings by describing alternative solutions
to membership management, critiquing our assumptions on synchrony,
and discussing the applicability of our solution.

• Chapter 9 concludes and outlines future work.

12

Chapter 2

Overlay Networks

Before we can devise a solution, we must have a clear understanding of rel-
evant work in the domain. This chapter therefore defines the concept of
overlay networks, as used in this dissertation, by describing several existing
systems and protocols. Next, we outline a general four-layered model that
captures common overlay-network functions. This model identifies member-
ship management as a core function for overlay networks.

2.1 Current Systems and Protocols

During the last five years there has been a tremendous activity in academia,
industry, and in the open-source community on the topic of P2P overlay
networks. Four major usage areas have emerged: search networks, Content-
Addressable Networks (CANs), Content-Distribution Networks (CDNs), and
storage networks. The search networks and CDNs are often combined in file
sharing applications.

In the following sections we will describe some existing systems within
these four primary usage categories. Comprehensive surveys and taxonomies
have been written by, for instance, Lua et al. [97], and Risson and Moors [121].
A good description of the early P2P systems can be found in Oram’s book
on harnessing the power of disruptive technologies [108].

2.1.1 Search Networks

A search network allows members to locate files or objects that are shared
out by other members. Input to a search is a query that specifies required
object properties. This can, for instance, be parts of a file name or, for a
music file, the name of the artist. Search returns objects that match the

13

(a) Members A and C joins. Mem-
ber D queries for a file

(b) Member D downloads a file from
member C

Figure 2.1: Search in the Napster protocol

search criteria or a set of Uniform Resource Identifiers (URIs) that enable the
objects to be retrieved.

A search network must be able to route query messages from the source to
those members that have matching files. Then it must route replies back to
the source. Optimizations include fusing, aggregating, and modifying replies
before they are delivered to the end-user.

Napster

Napster [65, 108] was a music sharing application where a central server
maintained an index of all shared files. Upon connection, a client uploaded
its file meta-data to the central index. All subsequent queries were directed
to the central server. The novel feature of Napster was that file transfers
were done directly between the clients without involving the server. Due to
its reliance on a centralized server for query matching, copyright owners were
soon able to shut down the Napster service.

Figure 2.1 illustrates a Napster network with members A through D and
the central server S. In Figure 2.1a A and C join the network, uploading
file meta-data to S. Next, D queries the server and receives a reply that the
newly joined member C has a matching file. In Figure 2.1b, D requests the
file directly from C. C then replies with the file.

Gnutella

In contrast to Napster, the Gnutella protocol [31] facilitates search without
using a central index. Instead, each Gnutella member knows only about
its own files. To facilitate search, each query must be routed through the
overlay to those members who have matching files. For this, each Gnutella
member maintains a list of neighbors, which is a subset of all members. Query

14

(a) Flooding queries (b) Returning query-hits, then file
transfer

Figure 2.2: Search in the Gnutella protocol

messages are broadcast using “hot potato” forwarding [41], or flooding, where
a member forwards all incoming messages to all its neighbors, except to the
member which the message was received from. Figure 2.2 shows a Gnutella
type of network with members A through H. In the figure, member A floods
a query to all members.

Each query message contains a hop counter that limits its range. To
decrease load, the maximum number of hops is typically set lower than the
expected diameter of the Internet. To increase search anonymity, queries do
not contain the identity or network address of the source (i.e., the member
that submitted the query.) Instead, query-hit messages are propagated back
to the source along the query’s forwarding path. In Figure 2.2b, members G
and H have matching files for A’s query and return query-hit messages along
the forwarding path.

To enable back propagation, queries include a pseudo-unique message
identifier, which is cached at each visited member. Subsequent file transfers
are done point-to-point using the Hypertext Transfer Protocol (HTTP) as
illustrated in Figure 2.2b. The URI required for making such requests is
included in the returned query-hit messages. Anonymity is not maintained
during file transfers.

In general, flooding protocols are highly resilient to omission attacks when
the underlying mesh has sufficient link redundancy. If an attacker omits
forwarding a query, its neighbors will likely receive it from other members.
However, the use of query flooding in Gnutella has been shown to have a
negative impact on its ability to scale. By theoretically analyzing properties
of the real world Gnutella network, Ritter [122] shows that a single query

15

can generate as much as 800 Megabyte (MB) of aggregate network traffic.

FastTrack

The FastTrack protocol [72] improves the scalability of Gnutella by enabling
members to participate as either leaf nodes or super peers1. The super peers
form a Gnutella like flooding network that maintains the meta-data of the leaf
nodes. Leaf nodes connect to one or more super peers but do not participate
in the flooding of ping and query messages. Typically, well-connected high-
bandwidth members become super peers.

GUESS

One problem with query flooding protocols is that submitted queries can not
be stopped. When a match is found at one member, subsequent redundant
forwarding of the query can not be avoided.

The Guess protocol [43] approaches this by making search iterative in-
stead of recursive, as with flooding. To find an object, a member must submit
its query to each of its neighbors in turn and await a reply. The implication
is that the individual response times all add up. As such, an attacker can
easily stall a search by delaying its response. However, the protocol does al-
low for members to trade increased probability of redundant forwarding for
increased response time by submitting a query in parallel to multiple neigh-
bors. To achieve high recall, iterative search protocols requires each member
to maintain a large list of neighbors. In particular, to reach all members,
complete membership information must be maintained.

PALocate

The Palocate protocol [81] reduces the number of messages on the wire
compared to Gnutella by having members store received queries as hints.
The idea is that if some member m submits a query, it is likely to find and
download matching objects. Member m is therefore a likely candidate to
match similar queries. Such queries should therefore be forwarded to m in
order to improve forwarding accuracy.

In Palocate, similarity is based on keyword matching. However, any
similarity metric can be used in practice. In addition to storing past queries,
members also populate their hint caches by actively exchanging hints through
gossip.

1Super peers are in other systems known as ultra peers or hubs.

16

To forward a query, a member m first checks its hint cache. If no hint is
found, it reverts to Gnutella like flooding and forwards the query to all its
neighbors. If m has one or more hints, the query is forwarded to the hinted
members. An upper bound is set on the fan-out to limit the forwarding load.
Although the protocol is shown to be more efficient than Gnutella, it does
not address how cache entries are to be kept up-to-date in face of churn.

2.1.2 Content-Addressable Networks

Content-Addressable Networks (CANs) are somewhat similar to search net-
works in that their primary goal is to locate objects. However, unlike search
networks, CAN localization is based on unique object identifiers, or keys, and
not queries. A key maps to at most one object, although each object can be
redundantly maintained at multiple members.

Distributed Hash Tables

After the initial flurry of activity around Gnutella and Napster, four overlay
substrates emerged in 2001. They all provided CAN functionality and ad-
dressed scalability issues in Gnutella by imposing a strict structure on the
overlay topology. These four overlays were: Pastry [127], Tapestry [155],
Chord [139], and the Can system [116].2 In essence, they all provide the
same abstraction: a Distributed Hash Table (DHT), which implements the
following functions:

• put(key, object), stores a persistent binding between a key and an ob-
ject.

• get(key), returns the previously stored object bound to a key.

• remove(key), removes any previously object bound to a key.

Each DHT member m is assigned an unique random identity, m.nodeId,
that is drawn from the same id space as the keys. Each objects o is assigned
a key, o.key, based on, for instance, the hash of its content or a public key.
A proximity function is also defined. The root of an object o is the member
m who, according to the proximity function, is closest to o in the id space.
Member m is then required to store o and produce copies of it on request.
Since the existence and integrity of o depend on the correct behavior of
its root, o is typically replicated by assigning it to k roots. This can be

2The Can system should not be confused with the more general term of a Content-
Addressable Network, although the Can system implements such a structure.

17

done either by inserting o under k different keys, or by having the k closest
members maintain o.

The id space is typically large. For instance, the Pastry id space is set
to 2128. As the number of participants is expected to be many orders of
magnitude less, each member will be responsible for maintaining multiple
keys. The use of consistent hashing to map nodeIds and keys into the same id
space ensures that existing objects are spread uniformly among the members.
Also, as members join and leave the overlay, root assignment for o might shift
from one member to some other member. This requires o to be transferred
to those members.

Knowing o.key, a member m can access o by routing a message through
the overlay to one of o’s roots. Each such message, d, contains the key of the
object to which d is addressed (i.e., d.key = o.key). Varying routing schemes
are used in different DHT implementation. We will now briefly describe some
of them.

Pastry and Tapestry Routing

Pastry and Tapestry use variants of the greedy prefix routing algorithm sug-
gested by Plaxton et al. [114]. In their scheme, each message d is routed
through a sequence of h members m1 → m2 → . . .→ mh, ending at o’s root.
For routing step i, one of the two following invariants is maintained

1. mi.nodeId and d.key share a common identity prefix that is longer than
mi−1.nodeId and d.key.

2. mi.nodeId and d.key is numerically closer than mi−1.nodeId and d.key

Although Tapestry uses prefixes instead of suffixes, the general principle is
the same. The following description will focus on Pastry.

To maintain the routing invariants, each Pastry member maintains a rout-
ing table. A routing table contains logBN rows and (B − 1) columns, where
B is the chosen numerical base and N is the number of members. Row r
of the routing table of member m contains entries for members that share a
nodeId prefix of length r − 1 in common with m. Column c contains entries
whose most significant digit after the prefix is c − 1. For instance, consider
the routing table in Figure 2.3a, for an imaginary Pastry member m with
m.nodeId = 32012. Row 3 column 4 of that table contains the entry for
some other member whose nodeId starts with 323. This member has a prefix
of length 3 − 1 = 2 in common with m. The most significant digit of those
nodeIds, excluding the prefix, is 3. In each row r exactly one entry will
have a common prefix of length r. In this case, the next row of the routing

18

nodeId: 32012

0 ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ 2 ∗ ∗ ∗ ∗ 3 ⇓
30 ∗ ∗∗ 31 ∗ ∗∗ 32 ⇓ 33 ∗ ∗∗
320 ⇓ 32101 322 ∗ ∗ 323 ∗ ∗
3200∗ 3201 ⇓ 3202∗ 3203∗
32010 32011 32012 32013
∗ = any digit ⇓ = next row

(a) Routing table for member 32012 (b) Routing ring

Figure 2.3: Pastry routing example

table should be used and is indicated with a ⇓ in the figure. As shown in
Figure 2.3b, if m is to route a message with key 32120, the node in row 3,
column 2 is selected, and the message is forwarded to member 32101.

In addition to the routing table, each Pastry member maintains a leaf set
and a neighbors list. The leaf set of member m contains entries for those
members whose nodeIds are numerically closest to m. Of these, half have
larger and half have smaller nodeIds. The length of the leaf table is fixed.
When routing a message d, a member first checks the leaf set to see if d.key is
within range. If not, d is forwarded using the routing table. The leaf set is also
used to find alternative routing paths such that failed members can be routed
around. The neighbors list of m contains entries for members that are close
to m with respect to network locality. This increases the routing performance
of Pastry since messages use fewer hops in the underlying network topology.

Joining a Pastry network requires several steps. First, the joining member
m1 routes a join message d to the root of its own nodeId (i.e., d.key =
m1.nodeId). Let m2 be that member. All members on the route from m1

to m2 respond to m1 by sending it their routing tables. From these, m1

computes its own tables. Next, m1 notifies its arrival by sending its state to
all members in its tables. Those members then update their tables.

Pastry takes an optimistic approach to solving contention due to concur-
rent node arrivals and departures. Each member has a time stamp associated
with each table. Whenever tables are exchanged, this time stamp is checked
and updated. If inconsistency is detected during a join, the operation is
restarted. Stale entries in the tables due to departures are repaired lazily by
exchanging state with members numerically close to the departed member.

19

1 5

72

68 3

4

(a) 2 sends a message that falls within
3’s zone

1 5

72

6
8 3

4

9

(b) 9 joins, causing 6’s zone to be split

Figure 2.4: Can routing example

Routing in the CAN system

The Can system uses a different type of routing than Pastry and Tapestry.
It assigns each member to a zone in the Cartesian coordinate space defined
by a d-dimensional torus. The two-dimensional variant of such a construct
can be drawn as a square where the top and bottom edges and the left and
right edges connect or “wrap around”, as illustrated in Figure 2.4. Zones
are assigned such that they do not overlap and such that they cover the
entire coordinate space. Their individual size might vary. Messages are
routed between adjacent zones until they reach their destination, as shown
in Figure 2.4a.

When a member m1 wants to join the overlay, it contacts the current
occupant of its designated zone, say m2, by routing a join message to its
own nodeId. m1 announces its presence to m2 and to all adjacent zones.
The zone is then split between m1 and m2. For instance, let 9 be a member
that joins the overlay shown in Figure 2.4a. Its designated zone is currently
occupied by member 6. The zone is then split between 6 and 9 as shown in
Figure 2.4b. In the Can system, routing tables do not grow with the number
of members.

Chord Routing

Chord [139] organizes its members and keys in a circular address space like
Pastry. Unlike Pastry, Chord messages are only routed in one direction in
the ring using the successor relationship. The successor of some key k is the
member who has the smallest nodeId equal to or larger than k, or if no such

20

member exists, the member with the lowest nodeId. To limit the number of
routing hops, each member maintains a finger table. Member m’s i‘th finger
table entry contains the successor of distance at least 2i−1 from m.

2.1.3 Content-Distribution Network

CDNs provide application level multicast functionality targeted at delivering
large sized messages from a single source to a large number of receivers. The
messages can be large music files, software packages, or live tv broadcasts.
The general idea is that the upstream capacity of the source is increased by
having members participate in the dissemination process. Many file sharing
applications add CDN functionality to their search infrastructure to increase
members’ download speeds.

Multimedia streaming is a particular type of content distribution where
the data consist of a continuous sequence of segments. After consuming a
segment, a member must receive the next within a bounded time. If not, that
segment will not be useful as the movie or music stream has played beyond
that time segment. Members can usually cope with a certain rate of segment
loss.

Bullet

Bullet [90] is a CDN protocol that can be layered on top of an existing overlay
tree structure in order to provide efficient data dissemination. To disseminate
a file, or a multimedia segment, the source data is split into a set of fixed-
sized blocks. Each member, including the source, runs a local scheduling
algorithm that decides which of it children each block should be forwarded
to. By sending disjoint sets of blocks to each child, a member ensures that
the different parts of the file are spread to different parts of the overlay. The
overlap between block streams is tuned in accordance to bandwidth capacity.
To receive all blocks, members exchange blocks parallel to the overlay tree
structure. For this, each member maintains a Bloom filter [18] that summa-
rizes received blocks. Members broadcast their Bloom filters to a random
subset of the members using the RanSub protocol [89]. Members with less
similar Bloom filters become neighbors and exchange blocks. To prevent du-
plication, each neighbor is assigned responsibility for different parts of the
stream.

21

SplitStream

SplitStream [24] divides each data segment into a fixed set of overlapping
stripes using erasure coding so that the original data segment can be re-
assembled from a subset of the stripes. Each member m has an inbound
and an outbound capacity limit. The inbound limit of m specifies how many
stripes m can receive concurrently. m’s outbound limit specifies the num-
ber of stripes m can transmit concurrently to other members. The problem
is then to create a graph that ensures that each member receives a suffi-
cient number of distinct stripes while, at the same time, not violating their
capacity limits.

SplitStream solves this problem by constructing one dissemination tree
for each stripe. The number of trees that member m participates in depends
upon its capacity limit. As such, different members might participate in a
different number of trees. Using the Pastry prefix scheme, m is made an
internal node in exactly one tree while a leaf node in all other trees. m will
be responsible for forwarding one stripe to one or more members. If m’s
outbound capacity is violated, it picks one of its children and redirect that
member down the broadcast tree using a push-down protocol. SplitStream
also employs a special spare capacity group in which members with spare
outbound capacity register. If a member can not find a parent node to attach
to through the push-down protocol, it will contact the spare capacity group.
The feasibility of the SplitStream approach is based on the observation that
most vertices in a tree are leaf nodes. A larger fan-out increases the fraction
of leaf nodes. For instance, with a fan-out of 16, over 90% of the vertices are
leaf-vertices.

CoolStreaming/DONet

CoolStreaming (Donet) [154] is a data driven multimedia streaming over-
lay, which has been deployed in practice to deliver tv-quality video (i.e.,
throughput above 450 Kilobits per second) to more than 4000 simultaneous
members.

Each Donet member m maintains a membership cache (mCache) con-
taining those members known to m. To keep the mCaches up to date, all
members periodically broadcast a heartbeat message that announces their
continued presence in the overlay. If a member fails to send a heartbeat mes-
sage within a certain period of time, it will time-out and be removed from
the mCaches of the other members. Heartbeat messages are disseminated
using gossip.

Each member selects a set of neighbors from its mCache and exchanges

22

multimedia segments with those. CoolStreaming improves the downstream
bandwidth using an adaptive neighbor selection algorithm that prioritizes
partners based on their mutual ability to deliver content to each other. For
this, each member maintains the number of segments received per time unit
from each of its neighbors. In order to find better neighbors, each member
will periodically include a random member from its mCache as a neighbor,
and exclude the one with the poorest performance. Neighbors continuously
exchange bitmaps of available segments with one another. A member request
segments from its neighbors by sending them a similar bitmap. A local
scheduling algorithm uses heuristic in order to best ensure that a segment is
delivered before the deadline.

2.1.4 Storage Networks

Storage networks provide files-system operations to their members. DHT-
based overlay networks are convenient substrates for global-scale persistent
file systems because they provide the infrastructure to maintain the binding
between a file name and file data. Also, most DHTs maintain replicas of each
stored object to increase availability. By building upon a DHT substrate, a
large number of members can be accommodated.

PAST

The Past file system [128] builds upon the Pastry DHT substrate. In Past
a 160 bit file-id is generated by hashing the combination of the file name, the
owner’s public key, and a random salt. The 128 most significant bits of the
file-ids are used as the Pastry routing key. Each key uniquely identifies one
particular file and its owner. The number of replicas is specified per files
upon insertion. Files are immutable once inserted into Past. They can,
however, be removed by their owner, although Past does not guarantee that
such operations succeed. Some or all replicas might outlive their removal
command.

Because file sizes vary and files are assigned randomly, storage require-
ments might differ from member to member. If a member does not have the
needed disk space to store a file, Past divert that file to some other member.
A pointer to the new location is maintained at the first location such that
the file can be found using Pastry prefix routing. Each file diversion adds a
routing hop when locating that file and complicates the task of maintaining
the required number of file replicas when members join or fail.

23

The Cooperative File System

The Cooperative File system (Cfs) [40] builds upon the Chord DHT sub-
strate. In Cfs, each file is split into a set of fixed-sized blocks. With each
data block is associated a routing key, which is calculated by hashing the
content of the block. Upon insertion, this key is used to route the block to
the set of responsible members. The use of fixed-sized blocks results in better
load balancing than when storing whole files, as in Past. It also enables a file
to be downloaded in parallel from multiple sources. Unfortunately, latency
suffers as each read operation requires multiple DHT lookups. To improve
performance, Cfs uses aggressive caching and file read-ahead.

In addition to the data blocks described above, Cfs defines root blocks,
directory blocks, and inode blocks. These block types contain pointers to
other blocks structures so that hierarchical file-system structures can be im-
plemented. Root blocks form the entry point to such file structures and can
be updated in-place. The key for a root block is the hash of the owner’s pub-
lic key. Each root block is signed with the private key of the owner. Time
stamps are used to prevents replay attacks.

Cfs stores blocks only for a finite period of time. Members must refresh
their blocks periodically in order to keep them in the system. When a block
lease expires, a server is free to delete it. To prevent exhaustion attacks
Cfs enforces a weak form of quotas. Each server allows a single entity to
occupy only 0.1% of its storage. Since blocks are assigned uniformly and
randomly to members, each member should be able to use on average 0.1%
of the available storage capacity.

OceanStore

The OceanStore [91] project, which is partially implemented in the Pond
prototype [120], builds on the Tapestry substrate and allows flexible object
update semantic. Each OceanStore object is represented as a sequence of
successive versions. Objects are not locked for writing. As such, multiple
clients can concurrently read and write to the same object. To ensure that
all replicas eventually observe the same sequence of updates, a small subset
of the replicas are selected to act as an object’s primaries. Members submit
all updates to these members. The primaries agree upon the update sequence
using a Byzantine fault tolerant consensus protocol. The resulting schedule
is broadcasted to all secondary replicas. Primaries are selected dynamically
based on their proximity to objects in the Tapestry identity space. Primaries
are assumed to be stable since view changes block the consensus protocol.

24

Freenet

Freenet [36] addresses privacy issues within file storage networks using a com-
bination of random walks, to locate files, and layered asymmetric encryption.
Although not considered a DHT, Freenet builds upon a similar principles of
mapping hashed file content keys to member identities.

In Freenet, object bindings are not mapped to members deterministically
as in DHTs. Instead, members specialize in delivering certain content. Mem-
bers forward messages to those neighbors that they consider more specialized
in finding the requested content than themselves. Hop counters and message
identifiers are used to prevent infinite routing loops, as in Gnutella. Values
are sent back through the forwarding path. Unlike DHTs, Freenet does not
guarantee that lookups for existing objects succeed.

2.2 General Model

An overlay network is a virtual packet processing and routing network built
on top of an existing network infrastructure like the Internet. As with any
network, an overlay is commonly represented as a graph where the vertices
are member processes and the edges are communication links. An overlay
network is constructed from a subset of the members in the underlying net-
work. Its links are logical in that they can be made up of multiple links in
the underlying network, as shown in Figure 2.5. Overlay links exist only as
part of the overlay state.

Although overlay networks can be constructed on top of any communica-
tion network, and can even be stacked on top of each other, this dissertation
is only concerned with overlays within the P2P computing paradigm. Hence,
our member processes are running on the desktop and laptop machines of
end-users that are situated on the edges of the Internet. Some overlay net-
works, like the Codns Internet name lookup service [115], enforce an open
group policy [32] where contribution is not required in order to utilize the
service. We will, however, in this section define an overlay network to include
only those members that actively participate in providing the overlay service.

2.2.1 Definition

Given the above, we define an overlay network as a graph O = {M,E},
where M = {m1,m2, . . . ,mn} is an unordered set of n member processes,
and E is the set of virtual communication links connecting those members.
A member mi can only send messages to some other member, mj, if the
link (mi,mj) ∈ E. Links can be either symmetrical or asymmetrical. For a

25

Figure 2.5: Overlay-network model

symmetrical link, (mi,mj) ∈ E ⇔ (mj,mi) ∈ E. In this case, we say that mi

and mj are neighbors. For asymmetric links, (mi,mj) ∈ E, does not imply
that (mj,mi) ∈ E. In this case, we say that mi is neighbor to mj.

Whether an overlay network has symmetric or asymmetric links depends
on the flow of high-level messages within the overlay structure, and not on
the flow of low-level transport messages. For instance, a single Transmission
Control Protocol (TCP) connection can be used to represent a symmetric
overlay link although symmetry of low level signalling needs to be broken in
order to establish that connection. Similarly, acknowledgements and other
control messages are allowed to flow back across an asymmetric link. As such,
Chord links are asymmetrical since messages travels in only one direction
along the ring. Gnutella links are symmetrical because query broadcasts are
not directional.

The overlay assigns to each member m an unique identity m.id. In addi-
tion, m has a network address m.address on which it can receive messages.
Each member m has a view m.view, which is a subset of all participating
members, M . Given two members m1 and m2, m2 ∈ m1.view means that m1

considers that m2 is at least until recently live. The opposite, m2 /∈ m1.view,
means the m1 considers that m2 is at least until recently crashed. Each mem-
ber m maintains a neighborhood m.neighbors, which is a subset of m.view.
Although members can communicate directly with one another in the under-
lying network, correct behavior within an overlay protocol dictates that m1

can only send a message to m2 if m1 is a neighbor to m2.

26

Services

Messaging

Topology Management

Identity Assignment

Figure 2.6: Functional components of overlay networks

2.2.2 Functional Components

Based on the description of current systems in Section 2.1 and the definitions
in Section 2.2.1, we have identified a model that captures an overlay network’s
functional components and their relation to one another.

Our model is divided into four layers, each on top of the next. As shown
in Figure 2.6, each layer depends upon the functionality of all layers below
it. Hence, the topmost layer is the service layer which interacts with the
user. This layer defines service specific functionality like user interfaces and
specific data decoding. The next layer is messaging, which service logic uses
to communicate with other members. Messaging is based on the topology
management layer, which maintains the set of virtual links. The topology
is dependent upon the assignment of identities in order for messages to be
routed to specific members. Our model is illustrated in Figure 2.6. We will
in the following describe the layers in more detail.

Services

Overlay networks provision for high-level services that typically mask the
distributed nature of the underlying network substrate. The most common
services fall withing the classification in Section 2.1, and include

• file search,

• persistent file storage and retrieval, and

• multimedia streaming.

Messaging

In its simplicity, the Internet, with the Internet Protocol (IP), only provides
one service: best effort unicast message delivery. Layered on top of IP, three
additional protocols are considered part of the core Internet protocol stack.
These are the Internet Control Message Protocol (ICMP), the User Datagram

27

Protocol (UDP), and the Transmission Control Protocol (TCP). Overlay net-
works extend these protocols and provide additional primitives like:

• Limited range broadcast, as in Gnutella.

• Location independent addressing, as in DHTs.

• Application level multicast, as in Bullet.

• Multimedia streaming, as in CoolStream.

As members only send messages to their neighbors, the overlay-network
topology dictates how different forms of messaging can be implemented. For
instance, the random structure of Gnutella lends itself well to flooding, but
makes point-to-point messaging expensive. The Pastry overlay structure is
well suited for prefix routing but makes range queries difficult to implement.

Topology Management

The members of an overlay network span out a communication mesh of links
through which messages can be sent. Each link is represented by an entry
in a members neighbor list. For instance, in Pastry, a member’s view is the
union of the entries in its routing table, leaf set, and neighbor list. Overlay
links are logical in that the existence of such a link between two members
does not imply that there needs to exist an established connection between
those members in the underlying network (e.g., TCP connections), nor needs
there ever be messages exchanged between those members. For instance, a
Pastry routing entry might never be used to route a message. The existence
of a link from member m1 to m2 is based upon the following three elements:

1. Knowledge. That m1 knows about m2 and consider it live (i.e. m2 ∈
m1.view). In particular, m1 must know m2.address.

2. Selection. A local algorithm at m1 selects m2 as a neighbor (i.e., m2 ∈
m1.neighbors).

3. Authorization. m2 is willing to accept messages from m1.

From m2’s perspective this sequence can be reversed. Authorization for m1

to connect to m2 is given only when m2 has selected m1 as its neighbor. To
select m1 as its neighbor, m2 must have knowledge about m1.

The dynamic property of overlay networks, which is due to members con-
tinuously joining and leaving, requires the link structure to continuously be
updated and reorganized. This means that each member actively participate
in the following three membership management mechanisms:

28

Knowledge Selection

Selected
Outbound

Authorized
Inbound

128.84.154.137

129.242.18.222

81.93.163.115

193.69.165.21

...

view

neighbors

Management

129.242.18.222

81.93.163.115

Links

193.69.165.21Discovery

Detection

Redirection

Figure 2.7: Topology management functions

• the discovery of other members,

• detection and exclusion of failed or non responding members, and

• the redirection of neighbors to better partners.

For instance, in Gnutella, a member m1 actively discovers other members
by flooding ping messages. Upon receiving the ping message, member m2

returns its network address in a pong message. Upon receiving the pong
message, m1 enter m2 in its view. If another pong message is not received
within some bounded time, m1 will remove m2 from its view. Gnutella
members are free to choose their neighbors. Consequently, the Gnutella
mesh does not follow a particular structure, although it has been shown to
exhibit a small-world topology in practice [130]. Pastry members discover
one another by exchanging routing tables when new members join. Probing
and timeouts are used to detect failed members.

The membership management function establishes and maintains for each
member m the knowledge that m has of other members in the overlay. In
particular, m.view contains members that m considers at least until recently
as live. From m.view, m selects a set of neighbors m.neighbors using some
service specific criteria. m.neighbors dictates which members m is to estab-
lish connections to, and which member are to connect to m. These functions
and how they relate to one another is illustrated in Figure 2.7.

Identity Assignment

Explicit identities are required in order to solve fundamental distributed
problems like routing and election. As such, an overlay network assigns
to each member an unique identity. IP addresses can not be used in general

29

because some overlays require a naming scheme with other properties. This
includes properties like:

• randomness,

• uniformity,

• persistence, and

• size of the address space.

For instance, to balance load, DHT systems require members to be dispersed
uniformly and randomly in the identity space. Due to their hierarchical
nature, IP addresses do not provide this property. The Can system, for
instance, solves this by having each member pick a random identity from a
large identity space.

Persistence is another common problem with IP addresses since some
members have their network address dynamically allocated. Some member
might also be running behind Network Address Translation (NAT) servers
that assign non-routable private class IP addresses. If state is to be kept on
such members across TCP connections, an overlay network must implement
some other identity scheme. The problem of traversing NAT boxes in order
to make masked members reachable, is addressed in [66].

30

Chapter 3

Design Rationale

The previous chapter identified membership management as a key functional
component in overlay networks. This chapter describes three important de-
sign requirements for an intrusion-tolerant overlay network that relate to
membership management. These three requirements form the rationale for
our design and implementation.

3.1 Key Design Requirements

We have identified the following three design requirements for intrusion-
tolerant overlay networks.

Requirement 1 The fraction of Byzantine members within the set of all
members must be upper bounded.

Requirement 2 The integrity of the overlay link structure must be main-
tained through intrusion-tolerant techniques for discovery, failure detection,
and redirection of members.

Requirement 3 Multi-hop overlay-network routing should be avoided in the
critical path.

Each of these design requirements relate to a functional components, iden-
tified in Section 2.2.2, as follows:

Requirement 3 −→ Messaging
Requirement 2 −→ Topology Management
Requirement 1 −→ Identity Assignment

As such, Requirement 1 and Requirement 2 relate to intrusion-tolerant mem-
bership management. Requirement 3 relate to messaging. We will in the
following discuss each requirement.

31

3.2 Identity Assignment

To participate in an overlay network, a member must have a valid identity.
If, for instance, IP addresses are used as overlay identities, each member must
possess one. The assignment of identities is a form of access authorization
mechanism and plays a key role in the ability of an overlay network to fight
attacks.

In distributed systems, the masking of both Byzantine and benign faults
is achieved through redundancy. If an attacker is able to control a large
fraction of the members, redundancy will be undermined. In this case, the
correct behavior of the system would be at the mercy of the attacker.

The fraction of Byzantine members that can be tolerated depends on the
protocol used and its underlying assumptions. However, there exist some
general upper bounds. For instance, for consensus the fraction of Byzantine
members among live members must be less than one-third [93]. Such limits
must hold within the overlay network as a whole and within any subsets of
the members selected for particular tasks. For instance, in OceanStore, the
number of Byzantine members within each primary replication group must
be less than one-third.

If an attacker is able to acquire a large number of identities, an overlay
is at risk of being compromised. A system is in particular at risk if members
may choose their identities freely. The forging of multiple identities in order
to gain control of a system is often referred to as to as a Sybil attack [50].
Hence, to be intrusion tolerant, an overlay network must implement some
mechanism that limits the fraction of members that are Byzantine.

Bazzi and Konjevod [15] suggest that triangulation of packet latencies can
certify that two identities are not held by a single host. Their approach is
based on the observation that physical dispersion of Internet hosts implies an
unforgeable lower bound on packet latencies due to the speed of light limit.
Consequently, an attacker that runs multiple protocol instances from a single
subnet can be detected and removed. The practicality of their approach
remains unproven. It is doubtful that this approach can be applied in the
wide-area Internet due to jitter in packet latencies and packet loss.

Castro and Liskov [25] argue that Byzantine members can be recovered
to a benign state by having all members periodically reboot. Such proactive
recovery would be useful to ensure that the fraction of Byzantine members
does not grow above assumed bounds during the lifetime of long running
services. However, their scheme assumes that the attacker does not have
access to the hardware. Also, it is not clear how reboot times can be organized
to avoid a large number of correct members rebooting at the same time.

Although the above mechanisms will make it harder for an attacker

32

to accumulate and control a large number of overlay-network identities,
Douceur [50] argues that only a central authority can establish distinctive-
ness. The mechanisms by which this is done includes tying overlay identities
to real-world identities like social security numbers or driver-licence identities.
Unfortunately, such schemes do not provide any guarantees since real-world
identities can be forged as well. In the end, a resourceful attacker can simply
circumvent these mechanisms by recruiting a large number of people through
mundane means such as bribes, social engineering, or physical threats.

3.3 Topology Management

Limiting the fraction of Byzantine members among live members is not suf-
ficient to thwart all types of attack. The overlay structure must also be
resilient to certain modifications to its topology. An attacker might, for in-
stance, try to modify the overlay link structure into undesirable patterns by
affecting correct members’ neighbor tables. Undesirable topological struc-
tures include the following:

• Partitioning. Colluding Byzantine members divide the correct mem-
bers into two or more partitions. All communication between the par-
titions of correct members must go through the set of Byzantine mem-
bers, as shown in Figure 3.1a.

• Focusing. Byzantine members collude and focus their effort on a single
correct member in order to deny service to it or break assumed prop-
erties on the fraction of correct neighbors, as shown in Figure 3.1b.

• Eclipsing. Byzantine members arrange themselves such that a correct
member has only Byzantine neighbors. In this case, they mediate most
or all traffic to and from that member. Such attacks are known as
Eclipse attacks [134]. If the Byzantine members are able to repeat
such an attack for all correct members, they will end up with complete
control of the overlay, as show in Figure 3.1c.

As argued in Section 2.2.2, an overlay link from member m1 to mem-
ber m2 exists only because m2 has authorized m1 to connect and m1 has
selected m2 as a neighbor. This implies that both m1 and m2 have knowl-
edge of each other. To affect the overlay structure, an attacker can target
the mechanisms that governs neighbor selection and knowledge maintenance.
Neighbor selection attacks on member m include

33

correct
members

correct
members

Byzantine
members

(a) Byzantine members partition the
correct members preventing them from
communicating

Byzantine
members

correct
members

(b) Byzantine members fo-
cus on a single correct
member

correct members

Byzantine members

(c) The Byzantine members are in complete control of the
overlay

Figure 3.1: Undesirable overlay topologies

• having m select Byzantine members as neighbors, which is necessary
to execute focus attacks.

• having m not select correct members as neighbors, which is necessary
to execute eclipse attacks.

Attacks on knowledge maintenance include:

• Targeting the discovery mechanism such that correct members discover
only Byzantine members.

• Targeting the failure detection mechanism such that correct members
are considered crashed.

• Targeting the redirection mechanism such that correct members are
directed to a set of only Byzantine members.

To be intrusion-tolerant, an overlay network must implement mechanism that
prevent an attacker from using these topological functions to his advantage.

34

Figure 3.2: Locality in multi-hop overlay network routing

3.4 Messaging

Each routing hop in an overlay network increases the end-to-end latency
and the redundancy required to ensure correct message delivery. We will in
this section discuss the cost of multi-hop point-to-point messaging and show
that it should be avoided in the critical path of intrusion-tolerant overlay-
networks.

Proximity Routing

Because overlay links are independent of the underlying network, inefficient
routing paths might occur. For instance, consider the three members A, B,
and C in Figure 3.2. A and C are on the same subnet, and are well connected
to each other. B is on a different subnet located in another continent such
that it is connected to A and C through a low-bandwidth and high-latency
link. The members have configured themselves within the overlay such that
there is a link between C and B, and a link between B and A, as shown in
the figure. In this scenario, if C sends a message to A, that message must be
routed through B. This is inefficient because the message will be required to
travel over the slow link twice even though its source and destination is on
the same subnet.

Such inefficiencies can be mitigated by constructing the overlay link topol-
ogy with the underlying network structure in mind. This is known as prox-
imity aware routing [23, 67]. For instance, in the above example, routing

35

efficiency can be improved by adding an overlay link between A and B.
Proximity aware routing is implemented in many routing substrates, includ-
ing Chord, Pastry, and Tapestry. The routing algorithm of these systems is
modified such that m will prefer forwarding messages to members who are
close to m with regards to the chosen proximity metric. Metrics for close-
ness include the distance in the IP address space, or measured round-trip
latencies.

Although proximity routing can improve performance of multi-hop rout-
ing, it also enables eclipse attacks because correct members can not determine
whether or not routing table updates are legitimate or biased by an attacker.
The effect of false membership information cascades with each subsequent
update enabling the attacker to modify the overlay structure to his advan-
tage [22, 134]. As such, proximity aware routing is at odds with using strict
random structures to defend against membership attacks.

The Cost of Path Diversity

In overlay networks, each routing hop that is needed to deliver a message m
to its destination increases the probability that m will be routed through a
Byzantine member. Having Byzantine members in the routing path is not
an ideal situation because they can not be trusted to forward or process
messages correctly. For instance, in DHTs systems that provide location-
independent routing like Pastry and Tapestry, an attacker can falsely claim
to be the destination of all messages routed through him. He may falsely
claim that object bindings do not exist or produce stale versions of stored
objects.

In general, if a message is routed in h hops, and if each member has
an uniform probability Pbyz of being Byzantine, then the probability of a
message being delivered successfully through a path of only correct members
is given by σh = (1 − Pbyz)

h. Although, in many overlay networks, the
number of routing hops increases slowly with the number of members (i.e.,
logN in Pastry), even a few hops significantly decreases the probability of
successful routing. For instance, consider a Pastry overlay with 105 members
and Pbyz = 0.1. Simulations shows that the majority of messages in such a
network require 4 routing hops [127]. In this case, σ4 = 0.66. Hence, 34% of
the messages would route through a Byzantine member.

Given Rh distinct and redundant routing paths in a h-hop routing overlay,
the probability that a message is delivered through a correct path, γ, can be
expressed as:

γ = 1− (1− σh)Rh

36

0

2

4

6

8

10

12

0.8 0.85 0.9 0.95 1

M
in

pa
th

re
du

nd
an

cy
(R

)

Prob. routing success (γ)

2 Hops
4 Hops
8 Hops

Figure 3.3: Required path diversity
for multi-hop routing

15

30

45

60

2 4 6 8 10

O
ve

ar
he

ad
fa

ct
or

(R
h
/
R

1
)

Hops (h)

Figure 3.4: Messaging overhead due
to multi-hop routing

Hence, the required number of routing paths given some γ is

Rh =
log (1− γ)

log (1− σh)
=

log (1− γ)

log
(

1− (1− Pbyz)h
) (3.1)

Figure 3.3 plots the required number of routing paths in a 4-hop overlay,
R4, for varying target probability of routing success, γ, with Pbyz = 0.1 and
using Equation 3.1. As expected, the required number of distinct routing
paths grows quickly when γ → 1. More alarmingly, the number of messages
on the wire is h×Rh. Routing overhead can then be calculated using R1 as
a baseline (i.e., when messages can be sent directly to each destination) as
follows:

Rh

R1

=
log (1− γ)/log

(
1− (1− Pbyz)h

)
log (1− γ)/log

(
1− (1− Pbyz)1) =

log (Pbyz)

log
(

1− (1− Pbyz)h
) (3.2)

Figure 3.4 plots the multi-hop overhead factor calculated using Equa-
tion 3.2 when varying the number of hops from 2 to 10 and with Pbyz = 0.1.
As can be seen from the figure, it is imperative to keep the number of routing
hops low. Ensuring with even a modest certainty that messages are delivered
will significantly increase overall system load. Embedding in each message a
route that has previously shown itself capable of deliver messages correctly
can mitigate some of this cost, although establishing such routes is costly in
a dynamic environment [107].

37

Object replication schemes that stores the replicas of each object o under
different routing keys, as in Tapestry and the Can system, make redundant
routing easy to implement because the paths to each replica of o is, by design,
likely to be diverse. Systems like Pastry and Chord, where o is replicated
based on members’ proximity to o.key, require each member to maintain
redundant entries in their routing tables and use randomized message for-
warding. To reduce performance degradation due to multi-hop routing in
such systems, Castro et al. [22] suggest that redundant routing should only
be used when normal routing fails. For this, they suggest a probabilistic
routing failure test for DHT systems based on comparing the density of mem-
bers around the sender with the density of members around the root. It is
unclear how such a test helps when an attacker legitimately controls a replica
and what impact the proposed protocol will have on messaging overhead.

38

Chapter 4

The Fireflies Membership
Management Protocol

The previous chapters identified intrusion-tolerant membership management
as a key function for intrusion-tolerant overlay networks. Chapter 3 stated
three requirements. In this chapter we present the design of Fireflies , a group
membership protocol that fulfils all three requirements. Our protocol can as
such be used as a building block for intrusion-tolerant overlay networks.

4.1 Protocol Overview

The Fireflies group membership maintains at each member a fairly up-to-
date view of all members. In essence, members monitor one another using
an adaptive failure detection protocol and issue accusations (failure notices)
whenever a member is suspected to have failed. When a member m1 receives
an accusation for a member m2, m1 waits a time period of length 2∆ before
removing m2 from its view. The value ∆ is a probabilistic upper bound on
end-to-end latency. Should m2 receive an accusation about itself, then m2

has the opportunity to issue a rebuttal before the timeout of 2∆ expires.
The rebuttal will invalidate any previous accusations for m2. Upon its re-
ception, m1 will stop its removal timer. Both accusations and rebuttals are
disseminated to all members using a secure gossip channel.

Each member m is assigned a set of gossip partners and a set of monitors
using a set of member rings, as shown in Figure 4.1a. The rings organize
members into a strict random structure. Each member calculates similar rings
based on their membership views such that they are able to validate inbound
accusations, as shown in Figure 4.1b. A central Certificate Authority (CA) is
used to assign member identities, which we will describe in the next section.

39

Member
Rings

Adaptive
Pinging

assign
neighbors

assign
neighbors

Gossip

(a) Membership rings dictates neighbor
assignment

Member
Rings

Adaptive
Pinging

Gossip

accusations

notes &
accusations

(b) Sending and receiving rebuttals and
accusations

Figure 4.1: The Fireflies membership protocol

4.2 Certificate Authority

Fireflies uses a central Certificate Authority (CA) for the assignment of mem-
ber identities. The CA enables Fireflies to fight the membership attacks listed
in Chapter 3 by ensuring that each member receives a random identity and
that there is a probabilistic upper bound, Pbyz, on the fraction of Byzantine
members among all members. By providing Pbyz, the CA implements design
Requirement 1 in Chapter 3. The assignment of random member identities
is also necessary, although not sufficient, for implementing design Require-
ment 2. The CA ensures the probabilistic upper bound on the fraction of
Byzantine member, Pbyz, using a combination of public-key cryptology and
background identity checks. We assume that the CA, correct members, and
crashed members never reveal their private keys.

4.2.1 Certificates

A certificate is an unforgeable binding between a set of attributes and a
public key attested by some private key using a digital signature. Having the
corresponding public key, the integrity of the certificate can be checked [123].
Fireflies uses two types of certificates, which we will discuss in the following
sections.

Group Certificate

The CA initiates a Fireflies group by creating a group certificate, as illus-
trated in Figure 4.2a. The group certificate contains the public key of the
CA, a textual group name, a version number, and one or more configuration

40

createGroup

CA

Group Certificate

Fireflies Group

(a) The CA creates a group

Fireflies Group

CAA
1. Credentials

2. Member Certificate

3. join

(b) Member A joins the overlay

Figure 4.2: The role of the certificate authority

options. The group name allows a single public key to be used for multiple
groups. For instance, if the CA is a news publisher, he might have one group
for each news topic with names like “headlines,” “sports,” or “finances.”
Configuration options are convenient for transmitting global static informa-
tion like default timeout values or the addresses of trusted bootstrap nodes.
The version number allows the group certificate to be updated. The group
certificate is signed with the private key of the CA and is made public such
that all potential members may download it. It is the responsibility of each
group member to check the validity of downloaded group certificates.

Member Certificate

To join, a process m first generates a public-private key pair m.public and
m.private. Next, m securely sends its credentials, including its public key
m.public and its network address m.address to the CA. If the CA accepts m
as a member, it generates and returns a member certificate, m.certificate,
containing m.public, m.address, an expiry date, a version number, and a
member identity. The identity is chosen at random by the CA such that m can
not modify it. Alternatively, if the CA generates the public-private key pairs
on behalf of m, the public keys, or their secure hash, could be used as member
identities. However, since key generation is a cpu intensive operation, moving
this responsibility to the members decreases the load on the CA thus making
it more resilient to DoS attacks. Using identities computed from public keys
when those keys are generated by members, is not safe because it allows an
attacker to pick identities that are beneficial to him.

All member certificates are signed with the private key of the CA. When-
ever m.certificate expires, m must apply for a new member certificate. In
this case, the CA sets a new date, increases the version number, and signs the

41

certificate. After member m has obtained a valid member certificate, m can
join the group without further involvement by the CA, as shown in Figure
4.2b.

4.2.2 Bounds on the Fraction of Byzantine Members

In order to make it hard for an attacker to obtain a large number of member
certificates, the CA is required to do a thorough background check on each
potential member such that each member identity is tied to a real-world
identity like a driver-licence number or a social-security number. Client puz-
zles [83] can also be used to increase the expense of obtaining an identity,
although this increases the load for correct members. Physical artifacts like
smartcards [51] might also be useful in practise since members must acquire
and handle a physical artifact in order to join.

Although using the above techniques the CA can make it hard for an at-
tacker to acquire control of a large fraction of the member identities, it can not
in general prevent an attacker from joining. Hence, we must allow the CA to
make mistakes at some rate. Given that, for instance, on average every 10th
member that join is controlled by an attacker, then the overlay will contain
about 10% Byzantine members. Because of the randomization of identity
assignment, those members will be scattered uniformly within the Fireflies
identity space. As such, we let Pbyz denote the expected upper bound on
the uniform probability that a randomly chosen live member is Byzantine.
Although this is a stronger condition than a bound on the probability that
any member is Byzantine, such a weaker condition would not suffice, as in
the case that most non-Byzantine members have crashed, the few remaining
correct members could be overwhelmed by Byzantine members. Nonetheless,
the assumption that among all live members only a fraction is Byzantine is
reasonable, particularly since we do not limit the fraction of crashed members
among all members.

4.2.3 Revoking Certificates

Certificate revocation is desired when a Byzantine member has been identi-
fied and needs to be removed from the overlay. Also, when a correct member
has detected an intrusion within its own software stack, it applies for a new
member certificate, but it may want to revoke its old certificate as quickly
as possible. While member certificates contain an expiration date and will
automatically expire after some period of time, this might take too long in
practice.

42

Figure 4.3: Fireflies mesh with three rings

In order to make immediate revocation possible, we essentially use cer-
tificate revocation lists. We employ two kinds of certificates: the public
key certificates that we have already introduced, and revocation certificates,
which contains the public key of the certificate that is being revoked, as
well as a serial number of its own. Revocation certificates can be reliably
distributed among correct members just like public key certificates.

4.3 Member Rings

Since Byzantine members might not accuse failed members in order to keep
them in the group, each member must be assigned a sufficient number of
monitors such that at least one is correct. However, there is a network over-
head associated with gossip, so we have to prevent Byzantine members from
submitting frequent accusations about correct members. This is a compli-
cated issue because correct members might accidentally accuse other correct
members due, for instance, to transient link failures. Thus not every false
accusation is from a Byzantine member.

To solve this Fireflies organizes the members in a virtual pseudo-random
mesh structure made up of k member rings. Each member ring is a circular
address space where each member m sits between exactly two other mem-
bers (assuming there are at least three members). Of those, one is called m’s
predecessor, the other is called m’s successor. On each ring, m is responsible
for monitoring its successor and will be monitored by its predecessor. The
number of rings, k, can be adjusted to trade attack resilience with network
overhead. The position of each member m on each ring is determined by ap-
plying a secure hashing function on m.id concatenated with a ring identifier.
As a result, a random mesh is formed where each member m has 2k neigh-
bors whereof k are monitoring m (its predecessors), and k are monitored by
m (its successors). As an example, consider the seven members A through
G in Figure 4.3 securely hashed into three rings. The successors of C are
{G,E,D}, and its predecessors are {B,A, F}.

43

predecessor(E) = A

successor(E) = D

A
B

C

D

E

F

Figure 4.4: Fireflies membership ring

4.3.1 Formal Definitions

More formally, we define a ring r to be the graph r = {M, id} where M , the
set of n members, represents the vertices, and id is an unique ring identifier
known to all members. The set of edges, E, connecting the members in M ,
is calculated deterministically from M and id. For this, we impose a total
ordering, <r, on the members, which is specific to each ring r. The ordering
function H is specified by applying a Secure Hash Algorithm (SHA) on the
concatenation (‖ symbol) of the members’ identities and ring identity in the
following manner:

H(m, r) = SHA(m.id ‖ r.id) (4.1)

The SHA function is required to provide a large address space with a low
probability of collision. Hence, H defines a total ordering on the set of
members that is different than the ordering of their identities. Given the two
members mi and mj, the ordering is defined as:

mi <r mj ⇔ H(mi, r) < H(mj, r) (4.2)

The edges in E are defined by this ordering such that there is one edge
between all adjacent members. Because <r is not circular, we also define
an edge between the highest and lowest numbered member. More formally,
there exists an edge between mi and mj iff there exists no other mk such that
mi <r mk <r mj or such that mi >r mk >r mj. This results in a 2-connected
Harary graph [71]—or a ring like structure as seen in Figure 4.4.

On each ring r we define the following relations:

• Successor. We say that mj is the successor of mi in ring r iff there
exists an edge between mi and mj and either mi <r mj or there exist
no mk >r mi. Each member has exactly one successor in r.

• Predecessor. We say that mj is the predecessor of mi in ring r iff there
exists an edge between mi and mj and either mi >r mj or there exist
no mk <r mi. Each member has exactly one predecessor in r.

44

• Rank. The rank relation adds transitive properties to the successor and
predecessor relationships. We say that iff there are exactly x successor
edges connecting mi and mj, then mj rank from mi is x. In this case,
we may also say that mj is mi’s x’th successor. While rank is primarily
associated with the successor relationship, we will also refer to mj’s
x’th predecessor in a similar manner. Note that although a member
ranks itself as zero, we refer to a member’s lowest ranked successor as
its immediate successor.

For instance, consider the members A through E in Figure 4.4. The address
space in the figure is drawn in circular clockwise manner. Then the successor
of E is D since D is the next clockwise member from E. Member C has rank
3 from E since it is the third member from E. By combining k rings with
different ring identifiers, each member m will be assigned k predecessors and
k successors for a total of 2k neighbors.

4.3.2 The Probability of Having a Correct Monitor

Because a Byzantine member might not accuse crashed members in order
to make them appear as live, we must make sure that all members have at
least one correct monitor assigned to it. Due to the randomization of the H
function and the assignment of random member identities using a trusted CA,
each neighbor of member m is assumed to have an uniform and independent
probability Pbyz of being Byzantine. Hence, the probabilities on the number
of Byzantine monitors of m has a binomial distribution [95].

Let X denote the binomial distributed random variable of the number
of correct monitors of m in a mesh of k rings. The probability Pr(X = t)
that m has exactly t out of k Byzantine monitors is given by the binomial
probability density function:

Pr(X = t | k) =

(
k

t

)
Pbyz

t(1− Pbyz)k−t, t = 0, 1, . . . , k

The probability of a member m having no correct monitor can then be found
by setting x = k, which gives

Pr(X = k | k) =

(
k

k

)
Pbyz

k(1− Pbyz)k−k = Pbyz
k (4.3)

For example, if k = 7 rings are used and Pbyz = 0.10, then the probability
of m having no correct monitor becomes 10−7. Hence, even a few rings
can ensure that each member has at least one correct monitor with high

45

probability. A single correct monitor is sufficient to ensure that if m crashes,
it will eventually be detected and subsequently excluded from the views of
correct members. However, having a large number of rings does not prevent
m from having Byzantine monitors assigned to it. Indeed, the probability of
this happening increases with the number of rings:

Pr(X ≥ 1 | k) = 1− Pr(X = 0 | k) = 1− (1− Pbyz)k (4.4)

In the above example with k = 7 and Pbyz = 0.10, the probability of m
having a Byzantine monitor becomes 0.523.

4.3.3 Disabling Byzantine Monitors

A Byzantine monitor can falsely accuse those members that he is assigned
to monitor. Although false accusations are rebutted by the accused member
and will not affect the views of correct members, repeated false accusations
can be used to execute a DoS attack. To deal with such attacks we allow each
member m to disable those monitors that are falsely accusing it of having
crashed. This must, however, be done in such a manner that m can not,
intentionally or unintentionally, disable all its correct monitors. In that case,
m could end up having only Byzantine monitors.

To solve this, let k = 2t+1 where t is the maximum number of Byzantine
monitors that some member m can tolerate. Next, allow m to disable t of its
monitors. Then, m can disable all of his Byzantine monitors. At the same
time, even if m only disables correct monitors, one correct monitor remains.
For instance, given 7 rings, m can tolerate having up to 3 Byzantine monitors.
After disabling 3 monitors, m still has 4 active monitors, whereof at least
one is correct.

In general, given 2t + 1 rings, the probability that m has more than t
Byzantine monitors is given by:

P (X > t | 2t+ 1) = 1− P (X ≤ t | 2t+ 1)

= 1−
t∑
i=0

(
2t+ 1

i

)
Pbyz

i(1− Pbyz)2t+1−i

We want to find the minimum number rings 2t + 1 so that the above prob-
ability is smaller than some value ε. We also want to make ε smaller for
larger sets of members, so that the expected number of members that have
more than t Byzantine monitors does not grow linearly with the number of
members N . For example, if we set ε = 1/N , then the expected number

46

N // Number of members

Pbyz // Probability of a member being Byzantine

binom.cdf //cumulative function of the binomial distribution

def findK(Pbyz, N):

for t in 1 to INF: //count to a large number

if binom.cdf(t, 2t+1, Pbyz) <= 1/N:

return 2t + 1

Figure 4.5: Algorithm for computing the required number of rings

of such unfortunate members is 1, independent of N altogether. Hence, we
want to solve the following

min
t

: ε >

(
1−

t∑
i=0

(
2t+ 1

i

)
Pbyz

i(1− Pbyz)2t+1−i

)
×N (4.5)

Binomial sums like the above can not easily be solved symbolically. Fortu-
nately, statistical software packages that can compute such sums are readily
available. If the cumulative binomial distribution is available, k can be found
using the algorithm shown in Figure 4.5. In Figure 4.6 we have computed k
for various N and Pbyz using ε = 1/N . Note that k rises slowly with N .

4.4 Data Structures

The members are gossiping two kinds of data structures: notes and accu-
sations. A member m creates accusations to convince other members that
it has detected a crashed member. It creates notes in order to notify and
convince the other members that it is live. In particular, m creates notes in
order to rebut false accusations.

Notes. Each member m is represented in the system by a note. A note is
a tuple (cert, version, enabled), signed using the private key of m. Here cert
is the member certificate of m issued by the CA of the group as described in
Section 4.2.1, version a monotonically increasing number used to order the
notes of m, and enabled is a bitmap that controls which of m’s monitors are
allowed to issue accusations against m, allowing m to disable misbehaving
monitors such that they can not repeatedly accuse it. By issuing a new note

47

0

5

10

15

20

25

30

35

40

45

1 10 100 1000 10000 100000

R
in

gs
k

Members N

Pbyz = 0.20
Pbyz = 0.15
Pbyz = 0.10
Pbyz = 0.05

Figure 4.6: Required number of rings

with a larger version number, m will invalidate all accusations made on all
of its previous notes.

Accusations. If a member m1 suspects a successor m2 on a particular
ring of having crashed, then m1 accuses the note of m2 last known to m1

by creating an accusation. An accusation is a tuple (note, ring, accuser),
signed by m1, where note is the note of m2, ring is the ring on which m2 is
a successor of m1, and accuser is the identifier of m1.

Views. Each member m1 maintains a view m1.view containing information
on all overlay members known to m1. The value m1.view[m2] =⊥means that
m1 does not have any information about m2. For each member m2 known
to m1, m1 maintains in its view m2’s most recent note and any accusations
for m2. The Fireflies protocol strives to ensure that the set of accusations is
empty for a correct member and non-empty for a crashed member. If m1 is
monitoring m2, then m1 also maintains the number of pings sent to m2 and
measured packet-loss rate, as will be described in Section 4.7. The fields in
the member structure are summarized in Figure 4.7.

48

note most recently known note of the member
accusations accusations, at most one per ring
nPings #pings sent since last “pong” response
avgLoss smoothed average of #pings lost + 1

Figure 4.7: Basic Fireflies member structure

4.5 Valid Accusations

A valid accusation indicates that the accused member might have crashed.
Upon member m1 receiving a valid accusation for member m2, m1 starts a
removal timer. If m1 has not received a rebuttal for that accusation within
2∆ time, then the removal timer will expire and m1 will consider m2 as
crashed. If m2 is in fact live, then it will rebut the accusation before the
removal timer expires.

As we have not bounded the probability that a member is crashed, all
predecessors of a member may be crashed with non-negligible probability. In
order to allow such members to be accused in case they fail, a member must
be able not only to accuse its immediate successor, but must also be able
to make accusations skipping over crashed successors. Doing so may allow a
Byzantine member to accuse any of its successors simply by claiming that it
believes that the more immediate successors are all crashed.

In order to counter such attacks, we create rules that govern which ac-
cusations are considered valid. Informally, m1 only allows the highest ranked
live member to make valid accusations of m2, and only on those rings that
are enabled by m2. Validity is defined recursively. Member m1 considers an
accusation for m2 valid iff

• the accusation is correctly signed; and

• the note in the accusation corresponds to m1.view[m2].note; and

• the ring in the accusation is enabled in the note’s enabled bitmap; and

• m1 holds valid accusations for all members it ranks (on the given ring)
between the accuser and m2 itself, if any.

In Figure 4.8, we show a schematic depiction of how one of the members
observes a group with 7 members, A through G. Valid accusations are shown
with solid arrows, while invalid ones are shown in dashed arrows. In this
case, k = 3, and for simplicity we ignore ring deactivation. An accusation

49

A B C

G

B
D

E E

C

G

G

F C

D

B

D

E

F

A

AF

Figure 4.8: Example of valid and invalid accusations

of B by D on the middle ring is a valid accusation (assuming the accusation
refers to the note of B and is correctly signed by D) because there are no
nodes in between D and B. This accusation is valid even though the accuser
D is validly accused by C. The accusation by A of C on the outer ring is
valid because there is a valid accusation against B, the node in between A
and C. The accusation of A by E is invalid as there is no valid accusation
of F .

4.6 Blocked Accusations

Even if a crashed member m1 has fewer than t+1 Byzantine live predecessors,
it is possible that an enabled correct live predecessor m2 can not accuse m1.
Consider the crashed members between m2 and m1 on the corresponding
ring and call them s1, . . . , sm. If the ring is enabled for all si, then m2 can
accuse all si and thus m1. Assume there is a member sj that disabled the
ring. Then m2 can not accuse m1 until m2 has received a valid accusation
for sj on a different ring. We say that the accusation of m1 is blocked by sj.
Unfortunately, m2 may never receive an accusation for sj. Member sj may
have fewer than t + 1 correct live predecessors, all of which being disabled.
It may even be that the accusation of sj is blocked by m1, thus creating a
loop preventing both m1 and sj of being accused.

To find how likely this situation is to occur, we constructed a simulation.
Initially, all members are correct and are present in all the views. At time
T = 0, 75% of the members crash, 20% of the remaining members become
Byzantine. In order to generate a worst-case scenario, the correct members
disable as many correct predecessors as possible, and the Byzantine members

50

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 3 5 7 9 11 13 15

%
 b

lo
ck

ed

t

N = 100
N = 300
N = 1000
N = 3000
N = 10000

Figure 4.9: The likelihood of blocked accusations

do not emit any accusations. In Figure 4.9, we show the results of this
simulation. The graph shows that even for large N , a relatively small value
for t makes blocked accusations highly unlikely.

4.7 Failure Detection

To detect crashed members, members monitor one another. Essentially, a
member m1 monitors some other member m2 by probing it at regular inter-
vals. Each probe involves m1 sending a ping message to m2. If m2 is correct,
it returns a pong message. If m2 is crashed, it will not answer. A probe is
only successful if both the ping and the pong messages are delivered. In the
time period between the ping and the pong message, we say that a probe is
pending or running. After some period of time, a pending probe will time-out
and will be considered failed.

Because the Internet is a best effort network, messages can be delayed or
lost. Hence, if a probe fails, m1 should repeat it. Only after τ consecutive
probes have failed, then m1 considers m2 crashed.

Using a static global time-out for τ is, however, not a good choice as
members might experience different packet-loss rates and end-to-end laten-
cies. A poorly chosen time-out value will cause correct members to either
accuse live members too often, resulting in unnecessary network traffic, or
cause correct members to accuse failed members too rarely, allowing them to
remain in the views. As such, the time-out value τ should be adapted to the

51

characteristics of each individual monitoring link.

4.7.1 Setting the Time-out Threshold τ

Bolot [19] shows that the loss of probe packets is essentially random when
the probe traffic consumes less that 10% of the available network bandwidth.
Also, Barford and Sommers [12] show that the overall loss-rate is stable. As
such, we model probing as a negative binomial experiment with parameters
r = 1 and the probability of a probe succeeding, Psuccess, reflected in the
measured packet-loss rate.

A successful probe requires that both the ping and the pong message are
delivered. Hence, the packet-loss probability rate Ploss, and the probability
of a successful probe Psuccess are related by Psuccess = (1− Ploss)2.

Let X denote the random variable of the number of probes required to
succeed. For instance, if a link has no packet loss, then X = 1. As a negative
binomial experiment, the probability that the probe succeeds at x attempts
is given by:

Pr(X = x) = (1− Psuccess)x−1Psuccess, x = 1, 2, . . .

If m1 repeats a probe τ times and m2 is indeed alive, the probability that at
least one probe succeeds is given by

Pr(X ≤ τ) =
τ∑
x=1

(1− Psuccess)x−1Psuccess = Psuccess

τ−1∑
y=0

(1− Psuccess)y

= Psuccess
1− (1− Psuccess)(τ−1)+1

1− (1− Psuccess)
= 1− (1− Psuccess)τ

Hence, if after τ failed probes, m1 decides that m2 has failed, the probability
that m1 is wrong, and the all probes have failed due to packet loss, is given
by

Pmistake = 1− Pr(X ≤ τ) = (1− Psuccess)τ = (2Ploss − P 2
loss)

τ (4.6)

If m1 wants to establish with certainty Pmistake that m2 has failed, then the
number of consecutive probes it must submit is given by:

τ =
log (Pmistake)

log (2Ploss − P 2
loss)

(4.7)

As shown in Figure 4.10, the threshold τ increases exponentially with the
Ploss. As such, we can not effectively determine a host failure with a high
accuracy when packet loss is high.

52

1

10

100

1000

10000

100000

1e+06

0 0.2 0.4 0.6 0.8 1

T
hr

es
ho

ld
τ

Packet loss Ploss

Pmistake = 10−1

Pmistake = 10−2

Pmistake = 10−3

Pmistake = 10−4

Pmistake = 10−5

Figure 4.10: Failure detection threshold τ as a function of packet loss

4.7.2 Rounding Error

The output of Equation 4.7 will produce values that might contain fractions.
For instance, if Pmistake = 10−4 and Ploss = 0.10, then τ = 5.546. Clearly,
m1 can not probe m2 5.546 times. Instead, it must choose either 5 or 6. In
either case, a rounding error is introduced. Because Ploss is determined by
the packet-loss rate of the underlying network, it can not absorb this error.
Hence, the error must be absorbed by Pmistake. Say that m1 chooses τ to
be 5. For this to occur, Equation 4.6 tells us that Pmistake = 2.47 × 10−4.
In other words, even though m1 configured Pmistake to be 10−4 the observed
Pmistake will be 2.47 × 10−4, which is 2.47 times higher. If m1 had chosen
τ to be 6, the observed Pmistake would be 4.70 × 10−5, which is 0.470 times
higher.

Figure 4.11 shows the observed Pmistake when converting τ to an integer
using three different functions.

• Rounding, uses the integer that is numerically closest to τ . This causes
the observed Pmistake to oscillate around the configured Pmistake as
shown in Figure 4.11a.

• Flooring, uses the largest integer smaller than τ . As shown in Fig-
ure 4.11b, flooring also causes oscillations but the observed Pmistake is
always larger than the configured Pmistake.

53

1e-05

1e-04

0.001

0 0.2 0.4 0.6 0.8 1

O
bs

er
ve

d
P
m
is
ta
k
e

Ploss

(a) Rounding

1e-05

1e-04

0.001

0 0.2 0.4 0.6 0.8 1

O
bs

er
ve

d
P
m
is
ta
k
e

Ploss

(b) Flooring

1e-05

1e-04

0.001

0 0.2 0.4 0.6 0.8 1

O
bs

er
ve

d
P
m
is
ta
k
e

Ploss

(c) Ceiling

1e-05

1e-04

0.001

0.1 0.15 0.2 0.25 0.3

O
bs

er
ve

d
P
m
is
ta
k
e

Ploss

(d) Ceiling closeup

Figure 4.11: The effect of rounding error on adaptive pinging

54

• Ceiling, uses the smallest integer larger than τ . As shown in Fig-
ure 4.11c, ceiling behaves similarly to flooring except that it always
remains below the configured Pmistake. Figure 4.11d shows the ceiling
function in a shorter interval.

Although the choice of which of these functions to use can be left to higher
level services, we will in the remainder of this dissertation take a conservative
approach and use the ceiling function.

4.7.3 Estimating Packet-Loss Rate

The calculations above relies on knowing the packet-loss rate. For this, we
estimate Psuccess, the probability of a probe succeeding, by measuring the
number of probes that m1 sends before it receives a response from m2. For
negative binomial experiments, the average number of trials required for
before a success is given by E(X) = 1

Psuccess
. By substituting this into Equa-

tion 4.7 we get

τ =
log(Pmistake)

log
(

1− 1
E(X)

) (4.8)

The value for E(X) can be estimated by m1 by recoding the difference in
sent ping messages and received pong messages. For instance, if m1 sends
6 pings to m2, but receives a pong from m2 only for the last ping, then m1

concludes that 1/6 of those ping messages were lost in the network.
To estimate future loss rate, we use the simple exponential smoothing

model. That is, if Ei(X) is the current expected value, x is the number of
pings sent before a pong is received and α is the smoothing factor, then

Ei+1(X) = αEi(X) + (1− α)x (4.9)

To measure the effectiveness of our adaptive pinging protocol, we con-
structed a simulation where a member m1 monitored some other member,
m2. The smoothing factor α was set to 0.99995 and the pinging interval was
set to 1 second. Packet loss was random and both members were correct
during the course of the experiment. Figure 4.12 shows the observed rate
at which m1 made pinging mistakes when the packet-loss rate, Ploss, varies
stepwise between 5% and 40%. As expected, the protocol will adapt over
time to quick changes in packet loss rate by adjusting the timeout threshold
τ . The figure also shows the expected rate of mistakes after adjusting for the
τ rounding error. Although in this particular experiment adaption is slow,
quicker response time can be achieved by choosing a lower α value.

55

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 4 8 12 16 20

M
is

ta
ke

ra
te

Days

Ploss =

5% 20% 40% 20% 5%

Observed
Expected

Figure 4.12: Adapting timeout threshold to packet loss rate

4.7.4 Threshold Limits

If packet loss is very low, τ would be set unrealistically low. With no packet
loss (Pmistake = 0), τ would even be undefined. We address these issues by
imposing a minimum threshold τmin. Similarly, if packet loss is very high,
then τ will be set unrealistically high. We therefore impose a maximum
threshold τmax.

4.7.5 Pinging Attacks

Byzantine members could potentially prevent detection of crashed members
by forging pong messages. This is prevented by having each ping message
contain a nonce that has to be signed by the monitored member and returned
in the corresponding pong message. This strategy prevents both forging of
pong messages and replay attacks.

Byzantine members can, however, generate a modest amount of overhead
on the system by not responding to ping messages from correct members,
and rebutting the ensuing accusations. Such “nuisance attacks” are easily
identifiable, and such members can be removed by revoking their public key
certificates.

56

4.8 Gossip

A gossip protocol is a simple group communication protocol whereby each
member periodically picks a random member from its view and exchanges
state information. Such protocols are known to be highly robust, as they
are essentially flooding protocols. But unlike flooding protocols, they are
efficient with probabilistic bounds on delivery latency [85]. In our particular
situation, we have to concern ourselves with Byzantine members.

All notes and accusations are signed, and because we assume that Byzan-
tine members can not break the cryptographic building blocks, we do not
have to worry about impersonation attacks. We have also assumed that
trivial DoS can be detected and suppressed. But Byzantine members can
still attack the gossip protocol in the following two ways. In order to slow
down dissemination, they can neglect to forward recent updates. This slow-
down can be incorporated in the calculation of the upper bound on message
dissemination, ∆. Byzantine members can also pretend that they have no
information, causing correct members to transmit their entire state to them
and thus causing unnecessary load on the correct members and on the net-
work. In order to reduce the opportunity for Byzantine members to launch
this attack, we will consider gossip protocols in which each member can only
gossip with a small subset of the membership. Kermarrec et al. [85] show
that it is possible to build effective gossip protocols if each member only
has a small set of uniformly chosen members it gossips with. Each member
m selects k gossip neighbors from its view uniformly at random. For such
a scheme to work, k must be large enough to create a connected graph of
correct nodes.

4.8.1 Ensuring Connectivity

A classic result of Erdös and Rényi [54] shows that in a random graph of
n nodes, if the probability of two nodes being connected is pn = (log n +
c + o(1))/n, then the probability of the graph being connected goes to
exp(− exp(−c)).

The number of correct members, n, is expected to be at least (1−Pbyz)×
N , where Pbyz is the configured upper bound on the probability that a live
member is Byzantine, and N is the total of the correct and the Byzantine
members. Then the probability that one member is connected to another is
1 − (1 − 1/N)k ≈ k/N . Thus pn ≈ 2k/N . We assume that every correct
member can connect to every other correct member. This assumption can
be relaxed, but pn has to be adjusted accordingly. In order for the correct

57

members to be connected with probability ϕ, we obtain

k ≥ N

2n
·
(

log
−n

logϕ
+ o(1)

)

4.8.2 Pseudo-Random Mesh

The analysis of the gossip protocol above tacitly ignores the possibility of
a Byzantine member selecting more than k neighbors in order to increase
the overall load on the correct members. Also, Byzantine members could
“gang up” on a small set of correct members, overwhelming them with gossip
load [11]. In order to fight such membership attacks, we introduce a rule that
determines who can gossip with whom. We use the same technique that we
used in Section 4.3 to assign monitors, except that we use a different number
of rings.

On each ring, a member initiates gossip only with the first successor in
its view. For ring r, a member m1 sets up a secure mutually authenticated
connection with its successor m2 using their private and public keys. Member
m1 then sends m1.note and the ring identity to m2, so that m2 can add m1

to its view if necessary and possible (existing accusations of m1.note might
prevent this). Member m2 checks that it is a successor of m1 on the proposed
ring using its local membership view.

One complication is that even when m1 and m2 are both correct, they
may have different views. In particular, m2 may know a “better” gossip
neighbor m3 for m1 that is not in m1’s view. If such is the case, m2 sends
m3.note to m1. Should m1 have plausible accusations for m3, then it returns
those to m2 and terminates the attempt to gossip. If no such accusations
exist, then m1 was unaware of m3. In that case m1 adds m3 to its view and
tries to gossip with m3 instead.

If at any point in time m1 should determine a better gossip neighbor for
ring r than m2, then m1 terminates the existing connection. Note that newly
joining and recovering members should gossip with at least t + 1 different
members before they can be reasonably certain that they will be integrated
into the “true” membership, as opposed to a fake membership created by
Byzantine members [134]. Gossip neighbors are thus chosen from a conve-
nient low-diameter mesh that connects the correct members.

4.8.3 Time-out value ∆

Next we determine the resulting ∆, the time to disseminate a message in a
random graph. To better preserve resources, each member does not update

58

all its k outbound neighbors in each round, but instead selects one neighbor
for each round in a round-robin fashion. Conservatively, we will assume that
it takes k rounds to update all gossip neighbors, and thus the dissemination
runs a factor k slower than if all neighbors were updated in each round. If dn
is the diameter of the graph of correct members, then the expected amount
of time to disseminate an update reliably among the correct members is
therefore ∆ = k × dn.

An asymptotic value for the diameter of the resulting graph dn can be
determined. A recent result of Chung and Lu [34] shows that if npn → ∞
(which in our case it does), then the expected diameter of our graph is given
by

dn = (1 + o(1))
log n

log npn

Unfortunately, it does not provide the constants needed to tune the mesh.
In order to find suitable constants, we ran simulation experiments with N
ranging from 16 to 16, 384 for varying Pbyz and with k chosen as above (ignor-
ing the o(1) term), to determine if the resulting graphs of correct members
are indeed connected and to obtain values for ∆. We ran each experiment
100 times. We encountered no disconnected graphs in any of our 3000 exper-
iments. In Figure 4.13 we report the maximum number of required gossip
rounds that we observed for each N and Pbyz with ϕ = 0.99999.

4.8.4 Communication Efficiency

Even if both m1 and m2 are correct, communicating all information back and
forth is inefficient, as most of the notes and accusations held by m1 and m2

are likely to be the same. Determining the differences of two set is a case
of what is known as set reconciliation. There exist protocols that reconciles
sets of information by only exchanging an amount of information that is
on the order of the size of the difference between the sets [21, 102, 103].
Unfortunately, set reconciliation can be computationally expensive, and so
we minimize its use.

Set reconciliation on the entire information of m1 and m2 must be done
when a connection between these members is first created. From then the
potential set of differences is greatly reduced, and it may be sufficient to send
only updates along the connections. It is possible to reduce communication
overhead further by performing set reconciliation iteratively on the updates
that occurred since the last gossip exchange between the members.

Byzantine members can attack this protocol by alternately appearing
correct and crashed, causing gossip connections to be set up and broken

59

0

20

40

60

80

100

10 100 1000 10000

ro

un
ds

members

Pbyz = .25
Pbyz = .20
Pbyz = .15
Pbyz = .10
Pbyz = .00

Figure 4.13: Number of rounds required to disseminate an update

repeatedly, necessitating new set reconciliations. In order to prevent correct
members from falling into this trap, they maintain in each member’s info
structure a smoothed average of the rate of information sent to this member,
and impose an upper limit on the rate using a leaky bucket flow control
mechanism.

4.9 Protocol Steps

In this chapter, we have described Fireflies , a protocol that correct mem-
bers follows in order to maintain up-to-date membership information in an
intrusion-tolerant manner. There are four event types that trigger transitions
in our protocol:

• Member m1 receives a note for member m2. If m1 has a note
for m2 that is as recent as the one that arrived, then m1 ignores it.
Otherwise m1 updates its note for m2, removes any accusations that it
has for m2, cancels m2’s view removal timer if any, and includes m2 in
its view. In addition, the removal of accusations for m2 may invalidate
accusations that m1 holds for other members. These accusations are
removed as well.

60

• m1 suspects m2. On each ring, m1 monitors the lowest ranked suc-
cessor m2 for which m1 does not hold valid accusations (unless m2

has disabled the ring, in which case m1 does not monitor anybody on
that ring). Should m1 suspect that m2 has crashed, then it creates an
accusation of m2 that is subsequently gossiped to the other members.

• m1 receives an accusation for m2. If m1 does not consider the accu-
sation valid, then m1 ignores it. If m2 = m1, then m1 replaces its note
with a new one to act as a rebuttal, which is subsequently gossiped to
the other members. If m2 6= m1 and m1 already has an accusation for
m2 on the same ring as the new accusation, then m1 replaces its accu-
sation only if the new one is from a higher ranked accuser. Otherwise
m1 accepts the accusation and sets m2’s view removal timer to 2∆.

• m1’s view removal timer for m2 expires. m1 removes m2 from its
view.

Using our protocol, an intrusion-tolerant overlay network that fulfills all
design requirements stated in Chapter 3 can be constructed. Requirement 1
is fulfilled by the central CA, Requirement 2 is fulfilled by the Fireflies mon-
itoring and gossiping scheme, and Requirement 3 is fulfilled by providing to
each member a up-to-date view of all participating members.

61

62

Chapter 5

FiRE: The Fireflies Runtime
Environment

This chapter describes Fire, a toolkit and runtime environment that facili-
tates the construction of intrusion-tolerant overlay networks. Fire uses the
Fireflies protocol, which we described in Chapter 4, to maintain intrusion-
tolerant membership information.

5.1 Overview

Fire is a library that executes in-process with application processes. It is
implemented in the Python programming language [147] using the Twisted
event-based networking framework [96]. Twisted provides to Fire an event
loop, tools for scheduling and handling events, and structures for implement-
ing low-level networking protocols. Using Python, Fire can run on a large
number of platforms, including: Windows, Linux/Unix, and Mac os x.

The primary function of Fire is to maintain the overlay-network structure
in an intrusion-tolerant manner by managing membership information and
neighbor selection as described in Chapter 4. Fire is made up of the following
four components:

• A Certificate Authority (CA) component that generates and manages
group and member certificates.

• A membership component that implements the membership rings and
the rules governing valid accusations and the selection of neighbor.

• A failure detection component that monitors neighbors using adaptive
pinging.

63

GossipFailure Detector

Membership C
A

Services

Network

Rings

Services
Services

Fireflies Runtime Environment (FiRE)

Figure 5.1: Architectural overview of Fire

• A gossip component that distributes notes, accusations, and member
certificates to all correct members.

Application-specific logic is implemented on top of Fire as one or more
services. Services are program objects that register themselves with Fire for
maintenance of membership information. For this, services are required to
implement an Application Programming Interface (API) containing a few call-
back functions. Other than this API, Fire puts few restraints on how services
are implemented and what actions they perform. For instance, a service may
communicate with other in-process services using shared variables or interact
with the underlying operating system in order to read and write files. Services
may communicate over the Internet using both TCP or UDP, or higher-level
protocols like HTTP. A service can provide generic messaging functionality,
like application level multicast, or implement high-level application logic, like
graphical user interfaces.

We have implemented several services. For instance, we have constructed
a web service that inspects the membership state and generates HyperText
Markup Language (HTML) pages upon HTTP requests. This service has been
beneficial to us in order to debug our code and to monitor our experiments.
We have also created several multicast services. In particular, we have cre-
ated a patch distribution service, which will be described as a case study
in Chapter 7. The relations between the components within Fire and with
services are summarized in Figure 5.1.

The membership component has a central role in the runtime. Its primary

64

function is to turn inbound certificates, notes, and accusations into high-level
membership events as specified by the Fireflies protocol. For instance, the
membership component will generate a failure event if an accusation has not
been rebutted within the set timeout 2∆.

Services use Fire to maintain up-to-date membership information. For
this, Fire can either be pulled periodically, or a service can register itself to
receive callbacks whenever there are membership changes. In particular, a
service can register itself such that Fire maintains its list of neighbors. In this
case, the service receives callbacks only when it needs to establish or break
overlay-network links. The service can instruct the runtime to maintain the
neighbors such that it, for instance, has at least one correct neighbor with
high probability. The failure detection component and the gossip components
are implemented using this feature.

The membership component is not aware of the underlying network. All
communication goes through the failure detection and gossip components.
Upon notification from the failure detection protocol that a monitored mem-
ber is suspected of having failed, the membership component will generate
an accusation for that member. The gossip component maintains a set of
notes, a set of accusations, and a set of member certificates. When gossip-
ing, data sets are compared and missing data elements are exchanged. These
are handed to the membership component and membership information is
updated accordingly.

5.2 Global Data Structures

Fire defines many data structures and constants. We will in this section
describe those that are most important.

5.2.1 Configuration Options

Fire can be tuned to meet particular application requirements using a wide
range of configuration options. In particular, the number of rings can be ad-
justed to trade intrusion-tolerance for scalability. All configuration options
are included in the group certificate as default values, as described in Sec-
tion 4.2.1. Some values, like timeouts, are flexible in that members can, to
some extent, override them without ill effect. Other values, like the number
of monitoring rings, are absolute in that members that modify them are con-
sidered Byzantine. Although these constants are described in the previous
chapters, we summarize them in Figure 5.2.

65

Symbol Description

Pbyz Upper bounds on the probability that a member is Byzantine
N Maximum number of members
∆ Upper bound on the time to distribute a membership event
Pmistake Target probability of making a pinging mistake
α Smoothing factor for adaptive pinging
τmin Minimum number of pings
Tping Pinging interval in seconds
Tgossip Gossip interval
Ttimeout TCP connection timeout
ϕ Target probability of having a connected gossip mesh

Figure 5.2: Configuration options

5.2.2 Data Objects

Fire defines and uses many data structures and objects. Important struc-
tures include those that are communicated to other members. These are
member certificates, accusations, and notes. In addition, the Fireflies pro-
tocol defines a group certificate. Figure 5.3 summarizes the content of these
structures as used by Fire. We will in the following describe important de-
tails relating to the implementation and usage of these structures, and show
how the Fire structures differ from those described in Chapter 4.

Fireflies use public key encryption to accomplish its goals. For signa-
tures Fire use 160 bits SHA-1 [53] and rsa-1024 [123] with 1024 bit keys.
Both algorithms are widely available and are commonly used [13]. Recently,
SHA-1 has become obsolete as collisions can be found with less than 269

operations [151]. Also, a mechanism that can break rsa-1024 keys within
reasonable time is proposed in [133]. Fire is constructed with such advances
in mind and can easily make use of new cryptographic tools and larger key
sizes.

An early Fire prototype used Python’s standard pickle functions for mar-
shaling communicated data elements. The pickle functions are flexible and
easy to use but do not marshal objects into compact structures. Pickled
Python objects are represented in a printable ascii data format and include
type information. Using pickle, Fire data structures measured in the order
of several Kilobytes (kBs). By using handwritten binary marshaling routines,
we gained a factor of 20 in network efficiency. Our data format conforms to
the External Data Representation (XDR) standard [137] such that it can be
parsed on many computer architectures.

Public keys and member certificates are large objects when compared to

66

Attribute Description

name Group name
public Public group key
config Configuration options (see Section 5.2.1)
version Version number
signature Signed with the private key of the CA

(a) Group Certificate

Attribute Description

identity Member identity
date Valid to date
public Member’s public key
address Member’s network address
version Version number
signature Signed with the private key of the CA

(b) Member Certificate

Attribute Description

identity Member identity
version Note version number
enabled Bitmap mask of enabled/disabled rings
signature Signed with member’s private key

(c) Note

Attribute Description

accuser Identity of the accuser
accused Identity of the accused
version Version number of the accused’s note
ring The ring number on which the accusation is made
signature Signed with the accuser’s private key

(d) Accusation

Figure 5.3: Fire data structures

67

hashes and signatures. All certificates created by the CA contain a 20 Byte
(B) member identity that uniquely identify the certificate and its embedded
public key. We have ignored this in Chapter 4, but in practice we can improve
communication efficiency by replacing the larger certificates with this smaller
member identity.

By replacing the full member certificate with the corresponding member
identifier, the size of a note is reduced with 143 bytes. Also, because accu-
sations have embedded the note of the accused member, their size will be
reduced as well. However, a further reduction on the size of accusations can
be accomplished by removing the notes from the accusations altogether. To
identify the note of the member that is accused, m.note, it is sufficient for
an accusation to contain only the accused member’s identity, m.id, and the
version number of the accused’s note, m.note.version. An accusation also
contains the public key of the accuser, which is replaced with the accuser’s
identity.

One possible complication of this optimization is that accusations and
notes are not self-contained. The implication is that the validity of an accu-
sation can not be established without previously having received the accused
note. Similarly, a member can not ascertain the validity of a note without
previously having received the corresponding member certificate. We address
this problem by specifying that correct members must exchange data in the
following order: first member certificates, then notes, and then accusations.
The corresponding group certificate must be obtained prior to joining using
an external trusted channel.

These above optimizations resulted in a public key certificate of 163 bytes,
a note of 49 bytes, and an accusation of 52 bytes.

5.2.3 Member Object

Each group member is represented within Fire by a member object that
encapsulates known state for that member. Many of the provided functions
take member objects as arguments. The attributes of a member object is
shown in Figure 5.4.

Services typically extend the member object with application specific at-
tributes. For instance, a broadcast service might associate a vector clock with
each member. Member objects are created whenever a member certificate,
with a previously unseen member identity, is added to Fire. Hence, services
do not create member objects directly.

Because notes and certificates are exchanged separately, member objects
can exist without having a proper note set. In this case, the member has an
implicit note with version number 0, and is considered crashed. Explicitly

68

Attribute Description

certificate The member’s latest member certificate
note The member’s latest note
accusations List of all current valid accusations
failed True if the member is considered not live
nrPings The number of unanswered pings
avgLoss The measured average loss rate

Figure 5.4: Fire member object

created notes have version numbers larger than 0. Hence, accusations for
notes with version number 0 are considered as Byzantine behavior and are
ignored by correct members. When creating a note, for instance in response
to a false accusation, a member increases its version number with 1.

5.3 Main Functionality

In this section we describe the core functionality of Fire. Most functionality
relate to the maintenance of membership information and neighbor selection.
Several event types and several functions are provided and enable Fire and
services to interact. The following sections will highlight important functions.

5.3.1 Joining a Group

To join a Fire group, a member must obtain a group certificate (gCert), a
member certificate (mCert), and the corresponding private key (mPriv). In
addition, the joining member must have member certificates of a sufficiently
large number of bootstrap members (bootNodes) such that at least one is
correct with high probability. A service can then join a group by invoking:

join(gCert, mCert, mPriv, bootNodes)

Optionally, trusted bootstrap nodes can be provided in the group certificate,
in which case the bootNodes argument is not needed. The CA component
consists of a set of command line tools to create and sign group and member
certificates. Fire provides library functions to marshal these data structures
to and from files.

69

5.3.2 Events

Fire produces events in response to changes in the membership. There are
three event classes: data events, membership events, and neighbor events. In
our current prototype, events are implemented as function callbacks. For
this, a function pointer and an argument list is put on an event queue. The
event loop responsible for making callbacks is provided by the underlying
Twisted networking framework [96]. To distinguish events from function
calls, event names are prefixed with ev.

Data Events

Data events are associated with the reception of low-level membership events
from other members over the Internet. There is one event for each of the
three communicated data types: accusations, notes, and certificates. Each
data event has a data object pointer o and a valid flag. If valid = 1, the
data object o is valid according to the membership rules. Otherwise, o is not
considered valid and should be discarded. The runtime will not explicitly
delete these objects because services might need to do their own garbage
collection.

Although Fire will not accept inbound data that is invalid, changes in
the membership might, for instance, cause a previous valid accusation to be-
come invalid. Notes and certificates become invalid when a higher numbered
version is received. The data events are:

evAccusation(o, valid): Contains an accusation o for the member m with
m.identity = o.accused. If valid = 1, the accusation is stored in the
m.accusations list.

evNote(o, valid): Contains a note o for the member m with m.identity =
o.identity. The note is stored in m.note and will invalidate all accu-
sations in the m.accusations list and the previous note in m.note.

evCertificate(o, valid): Contains a member certificate o for member m
with m.identity = o.identity. Object o is stored in m.certificate.
The previous certificate is discarded.

Membership Events

Membership events are triggered due to reception of data events and, in one
case, the passage of time. Membership events indicate changes within the
overlay structure in that one of four possible state transitions has occurred:
a new member joins, a member permanently leaves, a member crashes, and a

70

crashed member recovers. In Fire these four state transitions are represented
by two types of events:

evCrashed(m, reason): Indicates that member m has transitioned from a live
state to a crashed state. The reason argument indicates why this
occurs. If reason = 0, then m has permanently left the membership,
which is due to m.certificate being revoked or that it has not been
renewed before its expiration date. In this case, services can garbage
collect data structures and adapt to a permanent membership change.
If reason = 1 then m is considered failed due to it being accused and
not having updated its note before the failure timeout 2∆ expired.

evRecover(m, reason): Indicates that member m has transitioned from a
crashed state to a live state. If reason = 0 then m is a newly joined
member, which signifies a definite changes in the overlay structure. If
reason = 1 then member m was previously considered crashed, but has
updated its note such that all previous accusations are invalidated (i.e.,
m has rebutted the accusations). If reason = 2 then m was previously
considered crashed, but all previous accusations have been invalidated
through changes in the membership.

Neighbor Events

A neighbor event suggests that an overlay link should be established or bro-
ken. They are triggered as a consequence of a successor or predecessor crash-
ing or recovering.

evConnect(m, role): These events indicate that m is to be considered as a
neighbor. If role = 0 then m is a successor. If role = 1 then m is a
predecessor. If role = 2 then m is both a successor and a predecessor.

In practice, the role argument is used when symmetry needs to be
broken. For instance, after receiving an evConnect event, the Fire
gossip component decides based on the role argument if it should
establish a TCP connection to m, or if it should expect and accept
inbound connections from m. If role = 2, both inbound and outbound
connections could be established. In this case, the gossip component
breaks symmetry by comparing member identities.

evDisconnect(m, role): Indicates that m should no longer be considered as a
neighbor. The role argument has the same meaning as in evConnect

events.

71

5.3.3 Functions

In addition to emitting events, Fire exports several functions, including the
following.

register(o, k, mask): This function registers an object o as a sink for mem-
bership events. Which types of events o will receive depends on the
provided mask argument. The mask contains three bits. Each bit corre-
sponds to one of the three event types that was defined in Section 5.3.2.
If a bit is enabled, then Fire will deliver those types of events. The
bits are as follows:

Bit Symbol Event Type

0 evDATA Data events
1 evMEMBER Membership Events
2 evNEIGHBOR Neighbor events

The symbols in this table are constants that can be or’ed together to
create the appropriate mask.

The value k states how many neighbors are required by o. The following
values for k are calculated on startup based on the set configuration
options:

Symbol Meaning

Kone At least one correct neighbor
Kmaj A majority of correct neighbors
Kcon Members form a connected sub-mesh
Kall Indicates that the members should be fully connected

Note that if neighbor events are disabled (i.e., bit 2 of mask is disabled)
then the k argument is ignored. Figure 5.5 illustrates a service that
registers to receive neighbor events.

deregister(o): Object o will no longer receive membership events from
Fire. An unregistered object is allowed to make library function calls.

suspect(m, ring): Suspect member m of being failed on the specified ring.
The function fails if m can not be accused in accordance to the mem-
bership rules. Otherwise, the function results in the generation of an
accusation for the current note of m. If ring = −1, the first possible
ring is used. If ring > Kmaj, an error is produced.

72

FiRE

Messaging

register(k, evNEIGHBOR)

evConnect(m, role)

evDisconnect(m, role)

MessagingServiceMessages Messages

Figure 5.5: A Fire service that registers to receive neighbor events

members(all): Returns a list of member objects. If all = 0, the returned
list will contain all and only live members. If all = 1, the list will
contain all members, both crashed and live. A service can either pull
this function to maintain its view of the overlay, or register to receive
membership updates through the event interface.

getMemberByIdentity(id): This function returns the member objectm whose
m.identity = id. The function fails if no such member exist.

5.4 Internal Issues

In the previous section we described Fire from an external perspective. In
this section we will highlight important internal details. Key internal func-
tions are those that relate to the maintenance of the membership rings, failure
detection, and gossip.

5.4.1 Membership Rings

Fire maintains k membership rings, where k is the largest number of rings
requested by a subcomponent through the register(k, . . .) function.

Initially, k = Kmaj rings are created, one for each of the required number
of monitoring rings. The rings are numbered from 1 to k. Bit i of a note’s
enabled attribute controls monitoring on ring i + 1. If a service specifies a
k smaller than the current number of rings, the first k existing rings will be

73

succ(m, ring): // Return successor of m in ring.

idx = ring.index(m) // index of m in the ring array

return ring[(idx + 1) mod ring.length]

pred(m, ring): // Return predecessor of m in ring.

idx = ring.index(m)

return ring[(idx - 1) mod ring.length]

Figure 5.6: Pseudo-code for ring operations

used. If k is larger, then new rings are created. The creation of a ring does
not affect services that previously have registered.

To construct a ring structure from an unordered set of members, we keep
the member objects in a sorted array r. The edges are implicitly defined from
array element r[i] to r[i+ 1], except if r[i] is the last element, in which case
there is an edge from element r[i] to r[0]. Successor and predecessor opera-
tions are implemented using array index subtraction and addition modulus
the number of members, as illustrated in Figure 5.6. Rank operations are
implemented using recursive successor operations.

Different rings are then implemented by sorting the member objects in
different orders. For this, we associate with each ring an unique numeri-
cal identity r.id in the range from 1 to k. Next, we construct a ring spe-
cific pseudo-random sort key for each member m using the SHA-1 output of
m.identity concatenated with the ring identifier r.id. Because SHA-1 is
cpu intensive, computed ring identities are kept as an attribute of member
objects. Each ring array is kept sorted according to each sort key.

It is possible for a member to specify a number of rings that depends on
the size of its view. Care should be taken to deal with Byzantine members
specifying an enabled map in their note with a very large number of rings
in order to try to consume all memory of correct members. Our current im-
plementation of Fire assumes a static number of monitoring rings, implying
that a maximum membership size should be anticipated and enforced.

5.4.2 Gossip

The Fire gossip component is responsible for the distribution of low-level
data events. For this, the gossip component maintains three data sets: a set
of valid accusations, a set of valid notes, and a set of valid certificates. On

74

FiRE

Gossip
Accusations
Certificates
Notes

A
cc

u
sa

ti
o
n
s

C
e
rt

if
ic

a
te

s
N

o
te

s

A
ccu

sa
tio

n
s

C
e
rtifica

te
s

N
o
te

s

Accusations
Certificates
Notes

1. register(k)

2.

3.

4.

5.

Figure 5.7: Gossip of accusations, notes, and certificates

startup, the gossip component g registers itself with Fire by calling

register(g, Kconn , evData | evNeighbor)

After that, g will receive both data events end neighbor events from Fire as
shown in Figure 5.7. The data events are used to maintain the three data sets.
By specifying k = Kconn, Fire provides to the gossip component a sufficient
number of randomly chosen neighbors such that the set of correct members
will be connected with high probability, as described in Section 4.8.1.

The gossip component will listen for inbound TCP connections on the IP
address specified in mCert.address, where mCert is the member certificate
specified in the join function call. Upon receiving an evConnect(m, role =
0) event, the gossip component will establish and maintain a TCP connection
to m. Since the underlying membership protocol is responsible for failure
detection, a broken TCP connection does not signify a failure. Broken or
timed-out TCP connections are therefore reestablished such that interrupted
data exchange can be restarted. Exponential back-off is used to avoid adding
traffic to a congested network.

Although network traffic from multiple services can be multiplexed into a
single TCP connection, Fire currently does not implement this feature. There
are two reasons for this. First, multiplexing data streams would complicate
the implementation and add communication overhead. Second, application
messages would block membership messages, thus increasing the required
upper bound on dissemination time, ∆. If application messages are small,
this would not necessarily be a problem, but we do not want to impose
any limitations on message size. Although Fire could be instrumented to

75

on time to ping m on ring r:
τ = log(Pmistake)/ log(1− 1/m.avgLoss); // calculate threshold
if m.nPing > max(τ, τmin)

m.accusations.add(new Accusation(m.note, r, self.id));
else

send(m,new Ping(self.id));
m.nPing + +;

on receive Pong(m):
m.avgLoss = α×m.avgLoss+ (1− α)×m.nPing;
m.nPing = 0;

Figure 5.8: Adaptive Pinging Protocol

split large messages into smaller fragments, this would add complexity and
overhead. Instead, each TCP-based service must set up a separate connection
to each neighbor. Also, Fire currently does not support multiplexing of
inbound connections from a single listening port. Port number must either
be agreed upon in advance or be included in member certificates.

Each time a member m1 gossips with member m2, they first exchange a
collision-resistant hash of their sets of certificates, notes, and accusations. If
they differ, a full state reconciliation is done using the algorithm described
by Minsky et al. [102, 103]. Our current implementation of this algorithm
is based on the reference implementation made by Agarwal and Trachten-
berg [4]. The algorithm is optimal with regards to communication complexity
but can be cpu intensive.

5.4.3 Adaptive Pinging Protocol

In the same manner as the gossip component, the failure detection com-
ponent is managed by Fire by having it call the register function upon
initialization. It registers itself with k = Kmaj such that at most t out of
k = 2t+ 1 neighbors are Byzantine as specified in Section 4.3.3.

In Figure 5.8, we present a simple, but effective probing protocol based on
an adaptive failure detection mechanism as described in Section 4.7. Because
packet-loss must be estimated, our protocol uses UDP for unreliable message
passing.

In essence, m1 probes m2 at intervals of length Tping. If a probe has
not succeeded before the next probe is scheduled, then that probe is con-
sidered failed. If more than τ consecutive probes fail, then m1 considers m2

76

as crashed. In this case, m1 creates and gossips an accusation for m2. The
timeout value τ is adjusted to the estimated packet loss rate, Ploss, between
m1 and m2, and the configuration target probability of making pinging mis-
takes. Pmistake. After creating an accusation for m2, m1 does not immediately
consider m2 as crashed. It waits until the timeout period 2∆ expires.

77

78

Chapter 6

Evaluation

To evaluate both the Fireflies protocol and its implementation in Fire, we
constructed a basic Fire service, which only task is to initialize and run
the membership management protocol. We refer to each running instance of
this service as a Fire agent. We ran experiments using Fire agents in both
simulated environments and on PlanetLab. This chapter describes important
experimental findings. We describe in detail our experimental environments
and our setup. We also highlight important problems that were encountered
and describe possible sources of error.

6.1 Simulations

To produce repeatable experiments in a controlled environment, we con-
structed a simulated network environment in which Fire agents could run.
Simulated Fire agents shares most of the code-base with their networked
variants, but bypasses the TCP stack, the UDP stack, and the marshaling
routines for efficiency reasons. We also avoid copying accusation, notes, and
certificates structures by passing memory location pointers. Having members
share these data structures is unproblematic as they are made immutable us-
ing digital signatures.

By using the same code as in the networked variant of Fire, we get a
detailed picture of how the protocol will behave. It also simplifies debugging
as errors can be reproduced in a controlled simulated environment. Un-
fortunately, the level of detail which we simulate impacts the scalability of
the simulator. On a 3 Gigahertz (GHz) Pentium 4, we were able to simu-
late 256 members with simulation time running close to real-time. Observed
aggregate memory usage was never above 100 MB. The scalability limits of
our simulator does not not indicate scalability limits of the Fireflies proto-

79

col since we expect the protocol to be network bound when running in the
wide-area Internet.

With several hours of simulation time and several repetitions, a single
data point took up to 24 hours to produce. To speed up data generation,
we therefore ran simulations concurrently on a local cluster consisting of 36
3.2 GHz Intel Prescott 64 machines. As our simulator is deterministic, it is not
affected by the underlying software and hardware platform. In particular,
local timing issues and concurrent load are not factors in the output. Hence,
running simulations concurrently on multiple machines does not introduce a
bias.

In all experiments presented in this chapter, we used 25 membership
rings, which, according to our calculations in Section 4.3.3, enables Fire to
tolerate 20% Byzantine members within a group of up to 1000 members. The
ping interval, Tping, was set to 30 seconds. For gossip we used 8 membership
rings such that each member was assigned 16 neighbors. According to the
calculations in Section 4.8.1, this ensures that Fire can deliver membership
events to all correct members with probability φ = 0.9999999 within a group
of 1000 members when 20% of those members are Byzantine. The gossip
interval, Tgossip, was set to 3.75 such that each member gossiped on average
once every minute with each neighbor. The intervals at which a member
gossips were randomized in order to prevent synchronized “waves” of gossip.
The probabilistic upper bound on the time for gossip to spread, ∆, was set
to 2.5 minutes. We set the probability of making a mistaken failure detection
in the pinging protocol, Pmistake, to 0.001 in order to trigger frequent false
accusations.

To simulate churn, members would periodically crash and later rejoin.
Both the Mean Time To Failure (MTTF) and the Mean Time To Recovery
(MTTR) of all members were set to 6 hours. The intervals between crash-
ing and starting were exponentially distributed. Although several works
have argued that the exponential distribution does not accurately model
churn [105, 142], it is unclear if the proposed alternatives are better suited
for our purposes.

The total number of members, N , ranged from 16 to 256. Each exper-
iment was run for seven simulation hours, including an one-hour warm-up
period before measurements started. The warm-up period excludes from our
measurements the extra load incurred by bootstrapping the system. Each
experiment was repeated from nine to twelve times with different initial ran-
dom seeds.

For each set of experiment, we calculated 95% confidence intervals. With
128 or more members, the calculated confidence intervals were on average
within 2% of the measured value. With fewer than 128 members, confidence

80

intervals were higher. For instance, with 16 members, the average observed
confidence interval size was 9% relative to the measured value. The maximum
observed confidence interval was 12% in one experiment with 16 members.
Larger confidence intervals are expected with smaller membership sizes be-
cause there are fewer data points. For clarity, the graphs presented in this
section contain confidence intervals only where we consider them significant.

6.1.1 Overhead of Membership Maintenance

First we look at network overhead due to membership maintenance in absence
of Byzantine members. For each member, we record the rate of sent and
received notes and accusations. We do not record the rate of sent or received
member certificates since we do not simulate adding or removing members.

Figure 6.1a shows the average number of notes sent (created or forwarded)
per correct member per hour as a function of the number of members for
various Ploss, the probability of message loss.

Without packet loss, the expected number of notes is N/12, as on average
there is one recovery every 12 hours (i.e., MTTF + MTTR). With loss, pinging
mistakes are made. With 256 members, packet-loss approximately doubles
the number of notes generated as false accusations are rebutted. We see a
clear linear trend in the rate of sent notes as a function of the number of
members. This trend is expected as our simulated rate of churn increases
linearly with the number of members

Due to our adaptive pinging protocol the rate of mistakes is almost, but
not completely, independent of Ploss. In particular, a higher loss rate does
not necessarily imply more pinging mistakes. For instance, in Figure 6.1a,
for 5% packet loss the rate of notes sent is higher than for 10% packet loss.
The differences are due to the rounding error that occurs when calculating
the pinging threshold, τ , as explained in Section 4.7.2. Because we compute
τ using the ceiling function, our protocol consistently makes fewer mistakes
than what would be expected from the configured Pmistake.

Figure 6.1b shows the average number of accusations sent per correct
member per hour as a function of the number of members for various Ploss.
Because a failed member is accused on multiple rings, these rates are higher
than for notes. They do not depend much on the packet-loss rates. This is
partially due to our adaptive pinging protocol, but also due to the fact that
a pinging mistake results in only one accusation, while a crash results in up
to one accusation per enabled ring. In our case, each member has exactly
13 rings enabled at all times. Unlike a valid accusation, a false accusation
might also not reach all members if the accused member is quick to issue a
rebuttal.

81

0

5

10

15

20

25

30

35

40

50 100 150 200 250

no
te

s
/

ho
ur

members (N)

Ploss = .20
Ploss = .05
Ploss = .10
Ploss = .00

(a) Note rate

0

50

100

150

200

250

300

50 100 150 200 250

ac
cu

sa
ti

on
s

/
ho

ur

members (N)

Ploss = .20
Ploss = .05
Ploss = .10
Ploss = .00

(b) Accusation rate

Figure 6.1: Simulated network overhead for varying packet-loss rates

82

6.1.2 The Effect of Byzantine Members

Next, we introduced Byzantine members into our simulation. We imple-
mented two types of membership attacks:

• An aggressive attack, where the goal of the attacker is to remove live
members from the views of correct members and to induce extra net-
work load. For this, the attacker accuses other members of being failed
at any opportunity. The attacker will only create accusations that are
valid in accordance to its view of the membership. In particular, an
attacker will not accuse a member on a ring that is disabled since such
accusations are in clear violation of the membership rules. Correct
members will ignore any such invalid accusations and they might for-
ward them to the CA, proving that the attacker is not following the
protocol. The attacker will also refrain from forwarding a note if it
invalidates any accusations. This in order to prevent correct members
from rebutting false accusations made by either the attacker or by other
members.

• A passive attack, where the goal of the attacker is to keep failed mem-
bers in the views of correct members. For this, the attacker never
accuses members, and does not forward accusations of crashed mem-
bers.

We varied the fraction of attackers, Pbyz, from 0 to 0.2 for both aggressive
and passive attacks. The attackers were chosen randomly from the set of all
members. None of the attacks succeeded in our experiments, indicating that
Fireflies can deal with a large fraction of Byzantine members. The aggressive
attacks did, however, have a modest impact on the network load.

Figure 6.2a shows the average number of notes sent by correct members
for various Pbyz and styles of attack. Figure 6.2b shows the corresponding rate
of accusations. Surprisingly, the passive attacks decreased the rate of notes
and accusations. This observation is, however, reasonable because correct
members make pinging mistakes, which results in a false accusation followed
by a rebuttal from the falsely accused member. Because passive attackers
refrain from making any accusations, they will decrease the aggregate rate
of false accusations and subsequently decrease the network load.

Aggressive attacks had a moderate effect on traffic. With 20% of the
members executing aggressive attacks, the rate of notes increased one order
of magnitude compared to when there were no Byzantine members. The
rate of accusations doubled. This indicate that an attacker will be able to
increase load by creating false accusations, but the rate at which this can be
done is bounded due to correct members disabling Byzantine monitors.

83

0

25

50

75

100

125

150

175

200

50 100 150 200 250

no
te

s
/

ho
ur

members (N)

Pbyz = .2 aggr
Pbyz = .1 aggr
Pbyz = 0
Pbyz = .1 pass
Pbyz = .2 pass

(a) Note rate

0

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250

ac
cu

sa
ti

on
s

/
ho

ur

members (N)

Pbyz = .2 aggr
Pbyz = .1 aggr
Pbyz = 0
Pbyz = .1 pass
Pbyz = .2 pass

(b) Accusation rate

Figure 6.2: Simulated network overhead when under attack

84

6.2 PlanetLab

Our simulations indicate that the network load induces by Fire increases
linearly with the number of members. To gain a clearer understanding on
how Fire and Fireflies behave when deployed in the wide-area Internet, we
deployed our code on PlanetLab [7, 112, 136]. In essence, PlanetLab is a
world-wide collection of over 600 machines at over 275 sites connected to
the Internet in 30 countries, including China, Norway, and usa. PlanetLab
can be used to test new scalable protocols and to deploy novel distributed
services.

We first deployed Fireflies on PlanetLab in early February 2005, and
found the experience useful to find pragmatic problems and test our solutions.
However, as argued in Section 1.4.2, the overheads we measured, some of
which are presented below, are specific to PlanetLab only.

6.2.1 Experimental Setup

Our networked variant of the Fire agent uses TCP for gossip but UDP for
pinging as our adaptive pinging protocol needs to determine when messages
get lost. Each Fire agent is instrumented to write a checkpoint to a log every
10 seconds. Each checkpoint contains the current time and measurement
data. During an experiment, logs are kept locally on disk at each individual
PlanetLab machine. The checkpoint function is robust to delays and bugs in
other parts of the Fire code. A checkpoint contains approximately 100 bytes
of data. Writing checkpoints will in most circumstances not noticeably affect
the execution of Fire.

The clocks for recording log times were synchronized using the Network
Time Protocol (NTP), which can provide millisecond precision [101]. As
we are measuring trends over time-periods of minutes, NTP synchronized
clocks provide sufficient precision for our purpose. As a safeguard, all clocks
were periodically checked for drift using a local reference clock. Only a
few discrepancies were observed. For instance, two machines in France had
wrongly set time zones, which were compensated for in our logs. In other
cases, machines with irregular clock drift were observed. Such deviating
machines were excluded from our experiments.

Each experiment generated about 1 Gigabyte (GB) of log data. After an
experiment had ended, all logs were retrieved to and processed on a desktop
computer located at the University of Tromsø. In some cases, we were unable
to log into some machines after an experiment had ended. Such experiments
were discarded because we could not retrieve the logs on those machines.

In some cases, Fire agents would continue to run on unaccessible ma-

85

chines. Several experiments were discarded because such zombie agents
would integrate themselves into the new membership, thus interfering with
our experimental setup. Although changing the group certificate between ex-
periments prevents zombie agents from participating in the new membership,
they still interfere by establish TCP connections and sending handshaking
messages to members of the new group. We addressed this by changing the
TCP and UDP listening ports whenever we observed zombie agents.

6.2.2 Measurement Study

We will in the following describe the results of one of our PlanetLab experi-
ments. The experiment started on February 24, 2006, and ended February 26,
2006.1 The purpose of this experiment was to measure the behavior of Fire
under both low and high churn load and when, at the same time, under at-
tack by Byzantine members. Configuration options were set the same as in
the simulations above, except that Pmistake was set to a more sensible 10−5.

Our experiment started with Fire agents running on 280 PlanetLab ma-
chines. During the experiment about 10 PlanetLab machines became unre-
sponsive and fell out of the experiment. At approximately 20:11 on Febru-
ary 24, 2006, we terminated 80 of the agents, chosen randomly. At about
08:02 on February 25, 2006, those agents were restarted.

If an agent has not written a checkpoint to its log during a 4 minute
period, it is considered crashed in that period. The number of live agents
per time period is shown in Figure 6.3. As expected, we observe a large drop
in the number of members followed by an equally large increase corresponding
to when we terminated and when we restarted the 80 members.

Terminating the agents involved a script that logged into each individual
PlanetLab machine and issued an Unix kill signal. Hence, agents would
crash abruptly and without prior warning. The low-level signalling protocols
in Fire are instrumented to tolerate such failures. Starting agents involved
a similar script. The scripts ran from our desktop computer located at the
University of Tromsø. Running each script on all 80 agents took several
minutes.

To measure the impact of Byzantine members, 10% of the Fire agents
were configured to mount aggressive attacks, creating accusations at any
opportunity. Another 10% were configured to mount a passive attack, not
accusing and not forwarding accusations for failed members. Byzantine mem-
bers were chosen randomly from the set of all members.

In an early version of Fire, members chosen to execute aggressive attacks

1Dates are in Eastern Standard Time (EST) using 24-hour clock notation.

86

160
180
200
220
240
260
280
300

00:00
26 Feb

18:0012:0006:0025 Feb18:0012:0006:0000:00
24 Feb

m
em

be
rs

time (est)

Figure 6.3: Live members

0
1
2
3
4
5
6
7
8
9

00:00
26 Feb

18:0012:0006:0025 Feb18:0012:0006:0000:00
24 Feb

ti
m

eo
ut

s
/

se
co

nd

time (est)

Figure 6.4: Rate of timeouts

would start attacking immediately after startup, accusing other members at
any opportunity. We observed several instances where such behavior resulted
in Byzantine members partitioning themselves out of the membership with-
out causing much harm to other members. To have more effective attacks,
we therefore modified our code such that Byzantine members do not start
attacking until they had integrated themselves fully into the membership.

Figure 6.4 shows the aggregate rate of evCrashed events (i.e., failure
timeouts as defined in Section 5.3.2) emitted as a consequence of valid ac-
cusations not being rebutted. To show trends over time, we average data
over 30 minute time intervals. A clear peak of approximately 8.8 failures
per second can be distinguished when members are terminated. The peak
lasts for 30 minutes. Hence, over that period a total of 15, 840 evCrashed

87

events are registered. This corresponds well with the 16, 000 such events
that were expected as a consequence of the remaining 200 members emitting
an evCrashed event for each of the 80 terminated members. The missing
events are registered either before or after the peak period. This indicates
the remaining agents adopt to the outage within 30 minutes.

Membership Events

To analyze how the membership changes during our experiment, members log
a wide range of membership events. Figure 6.5a plots the observed aggregate
rate of accusations created per second, divided into total and false accusations
from Byzantine members. Two peaks can be clearly distinguished: when the
agents are terminated, and when they are restarted. The first peak is obvi-
ous: the terminated agents are accused by the remaining correct members.
The second peak was unexpected. It turned out to be caused by several re-
joining agents becoming unresponsive due to some heavily loaded PlanetLab
machines’ inability to accommodate the extra cpu and network overhead
incurred when re-integrating the recovering agents into the membership. Ac-
cidental accusations from correct members gives aggressive Byzantine mem-
bers opportunities to issue new false accusations, adding to the temporary
flurry of communication.

Figure 6.5b shows the aggregated rate of created notes (rebuttals). A
large peak at 08:02 February 25, 2006, was expected as the recovering agents
need to generate and disseminate new notes when re-integrating themselves
into the membership. We see a clear correlation with the rate of Byzantine
accusations shown in Figure 6.5a. For instance, the size of the 08:02 peak is
explained as follows. The 80 crashed agents whom, upon restart, all generate
a note within a period of 30 minutes, would incur an average of 0.04 notes
per second within that period of time. In addition, Figure 6.5a shows that
Byzantine members are generating approximately 0.09 false accusations per
second, which are all rebutted. In total, the expected rate of notes in that
period of time should be 0.04 + 0.09 = 0.13, which corresponds well with
what we observed in Figure 6.5b.

Uncontrollable Factors

All our measurements indicate that there is a fair bit of membership churn
not under our control. For instance, in Figure 6.5a, we see this as a constant
rate of new accusations being created. Because the liveness of a member is
only determined by its ability to write a checkpoint to file, the churn, seen as
wiggles in Figure 6.3, is not due to network outages or delays in the network.

88

0
0.04
0.08
0.12
0.16
0.2

0.24
0.28
0.32

00:00
26 Feb

18:0012:0006:0025 Feb18:0012:0006:0000:00
24 Feb

ac
cu

sa
ti

on
s

/
se

co
nd

time (est)

total
Byzantine

(a) Accusations

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14

00:00
26 Feb

18:0012:0006:0025 Feb18:0012:0006:0000:00
24 Feb

no
te

s
/

se
co

nd

time (est)
(b) Notes

Figure 6.5: Aggregate rate of membership events on PlanetLab

89

0

0.2

0.4

0.6

0.8

1

00:00
26 Feb

18:0012:0006:0025 Feb18:0012:0006:0000:00
24 Feb

co
nn

ec
ti

on
s

/
se

co
nd

time (est)
(a) TCP Connection

0
200
400
600
800

1000
1200
1400
1600
1800

00:00
26 Feb

18:0012:0006:0025 Feb18:0012:0006:0000:00
24 Feb

B
og

oM
ip

s

time (est)

max
mean

(b) cpu load

Figure 6.6: Observed churn on PlanetLab

In practice, we have observed that the majority of PlanetLab nodes tend to
be fairly well-connected, although some of the nodes are heavily loaded, to
the point of making some of these nodes effectively unreachable.

We have observed nodes that are only partially reachable, either due
to configuration problems or due to heavy packet loss. For example, some
nodes could not send or receive UDP messages, although TCP would work.
This has two consequences for Fireflies . First, a node that can not receive
UDP packets will accuse its successors, even if they are correct. This is not
a problem, as these successors will use their enabled bitmaps to disable the
corresponding rings. Second, such a node will be accused by its predecessors.
The accusations are effectively rebutted, and this accused member is not
removed from the views as long as it is able to gossip new notes (using
TCP). Unfortunately, the member can not disable all rings, which would have

90

its own problems, leading to the observed continuous background gossip of
accusations and notes. Besides a communication overhead on the network,
these superfluous messages increase the load on machines.

We also observed nodes that had problems communicating through TCP.
Members will time-out and try to restore a TCP connection to a neighbor
as long as the membership protocol considers that member live. Figure 6.6a
shows the aggregate rate of opened TCP connections per second. As expected,
there is a clear peak in the graph when the terminated members rejoin. We
also see a constant rate of new connections being opened, which indicate that
some members had connectivity problems.

A limitation of the Fireflies protocol is that the correct nodes must form
a connected gossip graph. In particular, Fireflies does not handle network
partitions. Some network partitions have been observed in our PlanetLab
deployment when an individual member became disconnected from the rest
of the network. Such a member is generally not able to accuse every other
member, and the partition prevents the member from receiving accusations.
It is then stuck with a view that includes members that it can not reach
until the partition is resolved. Occasionally, however, there are “successful”
partitions. For example, we have observed two members in China form their
own membership.

Because the set reconciliation algorithm that we use in our gossip protocol
is cpu intensive (see Section 5.4.2), we suspected that agents might be cpu
bound. To check our cpu utilization, agents recorded their effective cpu
user time, as reported by the underlying operating system. These values
were then multiplied with the machines’ BogoMips rating [49], which is a
coarse-grained estimate of the Million Instructions Per Second (MIPS) that a
processor can execute. The resulting value is an estimate of the MIPS used
by each agent.

Figure 6.6b plots both the observed mean and max BogoMips values.
As can be seen, the mean is fairly stable at around 300 BogoMips. The
highest recorded value lies around 1600 BogoMips. The average number of
BogoMips available on the machines that we used was 4270. The minimum
was 1145. With up to 25 concurrently running experiments (also known as
slices) and a median cpu utilization of about 50% [111], it is likely that some
agents did not operate correctly due to being cpu bound. This observation
indicates that the use of a cpu intensive set reconciliation algorithm might be
inappropriate in a heavily loaded PlanetLab environment. In environments
with more cpu capacity, this might not be an issue. For instance, we have
been running as many as 20 Fire agents on a single 3 GHz Intel Pentium 4
without them being cpu bound. Such a processor provides approximately
6000 BogoMips.

91

0

100

200

300

400

500

600

00:00
26 Feb

18:0012:0006:0025 Feb18:0012:0006:0000:00
24 Feb

ba
nd

w
id

th
(B

ps
)

time (est)

max
mean

(a) Outbound TCP traffic

0

50

100

150

200

00:00
26 Feb

18:0012:0006:0025 Feb18:0012:0006:0000:00
24 Feb

ba
nd

w
id

th
(B

ps
)

time (est)

max
mean

(b) Outbound UDP traffic

Figure 6.7: Network performance on PlanetLab

6.2.3 Network Performance

Next we examine the load that our system incurs on the network. We instru-
mented our code to record the number of bytes sent and received trough both
TCP and UDP, and included those numbers in the logs. The instrumentation
was done as far down in the protocol stack as possible such that all signal-
ing and protocol overhead were captured. We do not include overhead from
TCP and IP headers. Figure 6.7a shows the mean and maximum network
per member due to gossiping of certificates, notes, and accusations. The
bandwidth follows the rate of accusations, but mostly remain below 50 bytes
per second (Bps) per member. The various peaks are caused by the issues
described above. The largest observed peaks are when the 80 agents are
terminated and restarted, in which case, members sent as much as 520 Bps.

92

Figure 6.7b shows the mean and maximum number of bytes sent using
UDP (i.e., pinging traffic). The mean rate is fairly stable at approximately
50 Bps per member with a maximum of 100 Bps. The stable rate indicates
that members have a constant number of neighbors to monitor. There is a
small drop in the average when we terminate the members. This is expected
as monitoring assignments change.

93

94

Chapter 7

Case Study: Disseminating
Software Updates

To show that Fire can be used to construct useful overlay networks, this
chapter will describe the design, implementation, and evaluation of FirePatch,
a secure software dissemination mechanism. FirePatch combines encryption,
replication, and sandboxing with the intrusion-tolerant membership manage-
ment mechanism provided by Fire.

7.1 Background and Related Work

Automatic software updates for bug fixes are essential for Internet applica-
tions. It is particularly important when a software update fixes a security
hole. Software vendors, for fear of liability, release patches for security holes
as soon as possible. They do so without publicizing what the bug is, for fear
that hackers will exploit the vulnerability before end-users have an opportu-
nity to install the patch.

In practice the time between when a patch is released to the time that it
is installed is long and typically measured in days [9, 62]. A counterintuitive
observation is that a long patching cycle is worse than no patching cycle at
all. This paradox stems from the fact that a security patch can be reverse-
engineered to reveal the vulnerable code. In other words, if the software
vendor can not provide the mechanism to distribute and install a patch
quickly, the end user might be better of if the patch is not released at all.

Even if users are notified about a vulnerability and are able to download
a patch in time, installing a patch is an inconvenience and might lead to
downtime of critical services. Patches might also contain bugs that break
system configuration or introduce new vulnerabilities. It has even been sug-

95

gested that patch installation should be delayed until the risk of penetration
is greater than the risk of installing a broken patch [20].

Fortunately, protection against security vulnerabilities can be done in
the network layer by installing stateful packet filters like Shields [150], Self-
Certifying Alerts (SCAs) [37], or vulnerability-specific predicates [82] that
inspect and modify incoming packets. Such patches do not interrupt the
execution of applications and are a viable intermediate solution until the user
is able to install a permanent fix to the software. Also, automatic patching
infrastructures have emerged that greatly reduce the time software is left
vulnerable. For instance, a recent study on the Microsoft Windows Update
mechanism [62] shows that the automation of notification, downloading, and
installation of patches ensures that as much as 80% of the end-clients are
updated within one day of patch release.

This still gives a malicious agent ample time to construct and execute
an attack. For instance, by examining the binary difference between a vul-
nerable version of Microsoft’s Secure Socket Layer (SSL) library and a corre-
sponding patch, Flake [57] constructed a program that reliably exploited this
vulnerability within 10 hours. Marketplaces for buying and selling exploits
already exist [141]. It is therefore imperative that software vendors dissemi-
nate patches with low end-to-end latency. Such a patch dissemination service
must be resilient to DoS attacks and intrusions as hackers might target the
service to increase their opportunity to exploit the vulnerabilities exposed by
the patches.

A study done on several software vulnerabilities appearing in the last
half of the 1990’s [9] found that almost all intrusions can be attributed to
vulnerabilities known by both the software vendor and by the general public
and to which patches existed. The study found that vulnerable software
remained unpatched for months or even years. The primary reason for such
long patching cycles was, the authors claim, that the studied software was
not enrolled with an automatic updating service. Instead, end-users were
required to discover the existence of both vulnerabilities and patches on their
own by browsing the vendors web-sites, visiting bulletin-boards, etc.

With approximately 300 million clients, Microsoft Windows Update is
currently the world’s largest software update service [62]. The service con-
sists of a (presumably large) pool of servers that clients periodically pull for
updates. Other commercial patch management products like ScriptLogic’s
Patch Authority Plus1 and PatchLink Update2 enable centralized manage-
ment of patch deployment on the Windows platform. However, it is unclear

1http://www.scriptlogic.com/products/patchauthorityplus/
2http://www.patchlink.com/

96

http://www.scriptlogic.com/products/patchauthorityplus/
http://www.patchlink.com/

how any of these systems protect themselves from intrusion and if they ad-
dress the possibility that hackers reverse-engineer patches into exploits.

Open-source communities, like the Debian gnu/Linux Project3, organize
their software update services similarly to Windows Update as a pool of
servers that clients periodically pull for updates. Clients can freely choose
which server to pull. The servers are organized into a hierarchy with children
periodically querying their parent for updates. As these communities rely on
donated third party hosting capacity, an attacker can easily intrude into the
server pool.

The ratio of how often a patch is released and how quickly it must be
received by clients implies substantial overhead for pull-based retrieval mech-
anisms like those used in the above systems. Pushing is better suited for this
type of messaging, but incurs overhead to maintain an up-to-date list of
clients. Peer-to-peer content distribution systems, like SplitStream [24], Bul-
let [90], and Chainsaw [109] approach this by spreading both maintenance
and forwarding load to all clients. Although the elimination of dissemination
trees in Chainsaw makes it more robust to certain failures than SplitStream
and Bullet, these systems do not tolerate Byzantine failures.

A promising approach to detecting vulnerabilities in existing software is
to use machine clusters that emulates a large number of independent hosts in
order to attract attacks. Such “honeyfarms” have been shown to be able to
emulate the execution of real Internet hosts in a scalable manner [149] and
can be used to generate SCAs [37] automatically upon detection of intrusion.

7.2 Architecture and Assumptions

We distinguish three roles: patchers, clients, and mirrors. Patchers are typ-
ically software providers that issue patches. For simplicity, we will assume
a single patcher, although any number of patchers is supported. Clients are
machines that run software distributed by the patcher, mirrors are servers
that store patches for clients to download, and notify clients when a new
patch is available.

We assume that the patcher is correct and is trusted by all correct clients.
In particular, using public key cryptography clients can ascertain the au-
thenticity of patches. In our system, clients are passive participants, and in
particular do not participate in the dissemination system. Thus we do not
have to assume that clients are correct.

In order to increase the patcher’s upload capacity and ability to fight at-
tacks, we employ a distributed network of mirror servers. The more mirrors,

3http://www.debian.org/

97

http://www.debian.org/

the harder it is to mount a DoS attack against the network. However, the
easier it is to compromise one or more mirrors. We allow a subset of mir-
rors to become compromised, but assume that individual compromises are
independent of one another, and that the probability that a mirror is com-
promised is bounded by a certain Pbyz. However, we do allow compromised
mirrors to collude when mounting an attack.

The patcher publishes (and signs) the list of servers that it considers
mirrors for its patches. This list contains a version number so the patcher
can securely update this list when necessary.

We assume that all communication goes over the Internet, the shortcom-
ings of which are well-known. In order to deal with spoofing attacks, all
data from the patcher is cryptographically signed, and we assume that the
cryptographic building blocks are correct and the private key is securely kept
by the patcher.

7.3 Two-Phase Dissemination

We refer to the time from when a software vulnerability is first made public
to when the number of exploitable systems shrinks to insignificance as the
Window of Vulnerability (WoV). We have devised a dissemination protocol
that, when layered on top of a secure broadcast channel, makes the WoV
independent of message size. The net result of such an invariant is that the
WoV can be kept fixed and small despite the fact that voluminous data has
to be transferred over the wire.

We disseminate patches (or any data) in two phases. In phase one, we
distribute an encrypted patch, and in the second phase, we disseminate the
small fixed size decryption key. More formally, our general applicable pro-
tocol is specified as follows. Let d be a message that a source s wants to
disseminate to a set of clients. In the first phase, s generates a symmetrical
encryption key K and a unique identifier uid, and broadcasts a 〈envelope,
uid, K(d)〉 message, signed by s. Upon receipt and verification of the signa-
ture, a client stores this message locally. In the second phase, s broadcasts
〈key, uid, K〉 to all clients. Upon receipt, clients can decrypt the envelope
message. The uid contains a version number so clients can distinguish newer
from older versions of patches.

If t0 is the time when the first client receives a patch p, if t1 is the time
when the last client receives p, and if ∆attack is the time needed by an at-
tacker to reverse engineer p into a workable exploit, then, as illustrated in
Figure 7.1, the WoV opens at time t0 + ∆attack and closes at time t1. In
traditional dissemination the size of the patch determines the length of the

98

time

co
m

pl
et

io
n

%

WOV

∆attackt0 t1

Figure 7.1: Cleartext dissemi-
nation

co
m

pl
et

io
n

% WOV

∆attack
time

 phase 1:
encrypted data

 phase 2:
decryption key

t0 t1

Figure 7.2: Two-Phase dissemination

WoV. The advantage of the two-phase dissemination scheme is, as illustrated
in Figure 7.2, that the WoV only depends on phase two. That is, the dissem-
ination of a small fixed size decryption key.

The time between the two phases is a policy decision. One extreme is
to do the second phase immediately when the first phase completes. This
would require a mechanism by which the patcher detects when all recipients
have received the encrypted patch and are ready to install it. However, this
is not a viable approach as disconnected clients can delay the completion
arbitrarily. More alarmingly, malicious clients can prevent the second phase
from happening by never acknowledging receipt. A better scheme is to start
phase two some configured time after phase one is initiated. For instance,
in the Windows Update system, a 24 hour time period between the phases
would allow at least 80% of the clients to receive the encrypted patch [62].

7.4 Secure Dissemination Overlay

As mentioned before, FirePatch employs a network of mirrors to increase
the patcher’s upload capacity and to fight DoS attacks. The mirrors form a
superpeer-like network structure [153] to which clients connect. Thus, the
patcher does not broadcast patches and keys directly to the clients, but
instead to the collection of mirrors. The mirrors forward this information to
all clients that are currently connected to the Internet, and provides it on
demand to clients that connect to the Internet at a later time. Each client
connects to a minimum number of mirrors such that at least one mirror is
correct with high probability.

99

7.4.1 Mirror Mesh

An attacker might be in control of one or more mirrors. Such Byzantine
mirrors are not bound to any overlay protocol and might display arbitrary
and malicious behavior. Although cryptographic signatures prevent Byzan-
tine mirrors from modifying or inserting patches, they can still mount a DoS
attack by neglecting to forward data.

Our approach to fight such attacks is to ensure that the dissemination
overlay contains sufficient link redundancy and link diversity such that, with
high probability, there exists at least one path of only correct mirrors from
the patcher to each correct mirror and to each correct client. For this, we
build on Fire.

7.4.2 Data Dissemination

FirePatch reliably disseminates patches by an efficient flooding protocol on
the neighbor mesh created by Fireflies , much like ChainSaw [109]. First, a
patch is split into a set of fixed sized blocks that are individually signed by
the patcher and disseminated through the mesh. A mirror m1, upon receiving
block b, notifies all of its neighbors by sending them a 〈block-notify, block-
id〉 message, where block-id is the signature of the block. Upon receiving
this notification, m2 can request this block by issuing a 〈block-request,
block-id〉 message to m1. m1 then responds with a 〈block, block〉 message
containing the requested block. Upon receiving the block, m2 verifies the
signature and stores the block locally. m2 then notifies all its neighbors,
except m1 that it has received the block.

To enable clients to reassemble the patch from the blocks, the patcher
disseminates a signed 〈patch, uid, block-id list〉 message, where uid is the
unique patch identifier. Upon receiving such a message for the first time, a
mirror forwards it immediately to all its neighbors except the neighbor from
which the message was received. Finally, after some time, the patcher reveals
the content of the patch by disseminating a signed 〈key, uid, key〉 message.
These messages are disseminated similarly to the block-notify and patch
messages. Figure 7.3 summarizes the FirePatch dissemination protocol.

To run this protocol, each mirror maintains a TCP connection to each
of its neighbors. Mirrors strive to keep all connections busy downloading
missing blocks while trying to minimize the number of redundant blocks
that they both send and receive. For this we use two techniques. The first
technique is to randomize the order in which block-notification messages
are sent. This helps disperse the block randomly upstream from the patcher
such that mirrors are able to request different blocks from different neighbors.

100

on receive 〈BLOCK, block〉 from m:
blockid = block.signature
if blockid in missingBlocks:
blockStore.add(blockid, block)
missingBlocks.remove(blockid)
for patch in patches:

if patch.completed(): decrypt_and_install(patch)
for n in neighbors:

if n != m: send 〈BLOCK-NOTIFY, blockid〉 to n
schedule_next_request(m)

on receive 〈BLOCK-NOTIFY, blockid〉 from m:
if not blockid in blockStore:

availableBlocks[m].add(blockid)

on receive 〈BLOCK-REQUEST, blockid〉 from m:
if blockid in blockStore:

send 〈BLOCK, blockStore[blockid]〉 to m

on receive 〈PATCH, uid, blockList〉 from m:
if not uid in patches:

patches.add(uid, blockList)
for blockid in blockList: missingBlocks.add(blockid)
for n in neighbors:

if n != m: send 〈PATCH, uid, blockList〉 to n

on receive 〈KEY, uid, key〉 from m:
patches[uid].setKey(key)
if patches[uid].completed():

decrypt_and_install(patches[uid])
for n in neighbors:

if n != m: send 〈KEY, uid, key〉 to n

proc schedule_next_request(m)
queue = randomize(missingBlocks ∩ availableBlocks[m])
next_request = queue[0]
for blockid in queue:

if blockid not requested:
next_request = blockid
break

send 〈BLOCK-REQUEST, next_request〉 to m

Figure 7.3: Pseudo-code for the FirePatch dissemination protocol

101

This is particularly important during the initial phase of the dissemination.
The second technique is to schedule block requests randomly such that a
request for the same block is not made to more than one neighbor unless
some timeout has expired and the other connections are not busy.

7.4.3 Disconnected Nodes

A problem with the approach so far is that not all clients may be up and
connected to the Internet at the time that the patch is being disseminated.
When at some later time such a client connects to the Internet, it is vulnerable
as hackers have now had ample time to create an exploit and may be lurking
on such clients. We thus need a protocol for connecting clients to get the
patches thay are missing without being compromised.

Our approach is as follows. When running, clients store the list of all mir-
rors (disseminated by the patcher just like patches and keys) on disk. When
a client connects, a local firewall is initially configured to block all network
traffic except certain message formats to and from the mirrors selected at
random from the stored list. A client connects to a minimum number of
mirrors in order to make it likely that at least one of the mirrors is correct.
If all clients connect to all mirrors an unreasonable load might ensue on the
mirrors.

First, the client sends a 〈recover, v〉 message to each selected mirror,
where v is the version of the latest installed patch at the client. Each mirror
responds with notifications of the missing patches as in the protocol described
above for connected clients, and the client proceeds to download the neces-
sary patches and keys while all other messages are ignored and dropped.
When completed, the client reconfigures its firewall to allow arbitrary com-
munication.

7.5 Evaluation

Our prototype implementation, which is written in Python on top of Fire,
has been evaluated on a local cluster consisting of 36 3.2 GHz Intel Prescott 64
machines with 2 GB of ram. The machines were connected by a 1 Gigabits
per second (Gbps) Ethernet network. We ran 10 mirrors on each machine for
a total 360 mirrors. In addition, one dedicated machine was used to run a
mirror that acted as the patcher. To limit the effect of network congestion,
the outbound bandwidth of each agent was, using a hierarchical token bucket,
limited to a rate of 500 Kilobytes per second (kBps) with a max burst size of
1 MB. In addition, each agent divided its total bandwidth equally amongst

102

1

10

100

1000

4 16 64 256 1024

ti
m

e
(s

ec
on

ds
)

blocksize (kB)

Figure 7.4: Effect of the block size on dissemination

all its active neighbors. In all experiments we used k = 9 Fireflies rings,
resulting in each mirror having 18 neighbors. Hence, bandwidth between
two mirrors was approximately 28 kBps.

In our first experiment we measured the effect of the block size on the
end-to-end latency. Our experiment consisted of injecting 2 MB patches with
block sizes varying between 4 kB and 2 MB. We used a 240 second delay
between consecutive patches to prevent interference. A 20 B decryption key
was released after a fixed delay of 180 seconds after each patch. To achieve
acceptable 95% confidence intervals, we repeated each experiment 20 times.

Figure 7.4 shows the resulting average total dissemination time4. As can
be seen from the figure, the block size has a significant impact on the end-to-
end latency. As expected, the messaging overhead increases with the number
of blocks. Also, as the block size increases, the efficiency of our randomized
block selection algorithm decreases, producing more duplicate messages and
hence a longer dissemination time. We observe that in our set-up the optimal
block size is between 16 kB and 64 kB.

Next we tested FirePatch’s resilience to attacks from an increasing frac-
tion of Byzantine mirrors in both phase-one and in phase-two of our dissem-
ination protocol. We fixed the block size at 32 kB and repeated the previous
experiment with the fractions of Byzantine mirrors varying between 0% and
20%. Each Byzantine mirror was configured to execute omission attacks by

4The measured 95% confidence intervals were small and are left out for clarity.

103

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

ti
m

e
(s

ec
on

ds
)

completion (fraction of mirrors)

20% Byzantine
10% Byzantine
0% Byzantine

Figure 7.5: Time to complete phase-one

notifying block arrivals but not responding to block requests from neighbors.
Byzantine mirrors were chosen randomly from the list of all mirrors. In all
our experiments Byzantine mirrors were not able to prevent correct mirrors
from completing either phase-one or phase-two.

Figure 7.5 shows the resulting average time for an increasing fraction of
the mirrors to complete phase-one of our protocol. As expected, the graph
displays a clear gossip-like behavior by starting slow, speeding up, then end-
ing slow. When under attack by 20% of the mirrors, we observed a delay of
less than 1 second compared to when all mirrors were correct. This indicates
that FirePatch is highly resilient to omission attacks. Note that for larger sys-
tems we expect the dissemination time to grow logarithmically in the number
of mirrors because the diameter of the Fireflies mesh grows logarithmically.

Figure 7.6 shows a similar graph of the completion of phase-two. As
expected, the dissemination of the smaller decryption key in phase-two is
significantly faster than for the larger sized patch in phase-one. Also, omis-
sion attacks had little impact. Figure 7.7 shows the reduction of the WoV
size due to our two-phase dissemination protocol when the patch size varies
between 128 kB and 4 MB.

Next we compare our phase-one dissemination protocol with näıve push
and pull mechanisms. For the push mechanism we modified our code such
that mirrors transmitted the blocks instead of block notifications. To imple-
ment a pull mechanism we modified our block request scheduler such that it

104

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.2 0.4 0.6 0.8 1

ti
m

e
(s

ec
on

ds
)

completion (fraction of mirrors)

20% Byzantine
10% Byzantine
0% Byzantine

Figure 7.6: Time to complete phase-two

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3 3.5 4

re
du

ct
io

n
fa

ct
or

patch size (MB)

Figure 7.7: Reduction in the Window of Vulnerability due to two-phase
dissemination

105

1

10

100

1000

0 0.5 1 1.5 2 2.5 3 3.5 4

ti
m

e
(s

ec
on

ds
)

patch size (MB)

pull
push

FirePatch

Figure 7.8: Comparison with näıve pull and push

0.01

0.1

1

10

100

1000

10000

0 0.2 0.4 0.6 0.8 1

ti
m

e
(s

ec
on

ds
)

completion (fraction of mirrors)

phase-one
phase-two

Figure 7.9: Dissemination on PlanetLab

106

would not make more than one request for a block unless a static timeout
of 20 seconds had expired. The performance of pull, push, and FirePatch
dissemination for varying patch sizes is shown in Figure 7.8.

To test FirePatch in a more realistic environment, we deployed our code
on PlanetLab. We set the fraction of Byzantine mirrors to 20% and removed
the bandwidth limitation.

Figure 7.9 shows the result of one experiment that we ran on the 30th of
October 2006 where a 2 MB patch and a 20 B key were disseminated in a mesh
of 279 mirrors. In this particular setup 80% of the mirrors had completed
phase-one within 24 seconds and phase-two within 0.58 seconds. However,
we also observed that a few mirrors used a significantly longer time. It
turned out that these mirrors had become unresponsive due to heavy cpu and
network load from other projects. This was particularly noticeable during
phase-two where all but two mirrors received the key within 19 seconds. The
last two mirrors became unresponsive between the phases but reintegrated
themselves into the mesh and completed phase-two one hour later. Because
each client connects to multiple mirrors, such outages will not prevent clients
from receiving updates.

107

108

Chapter 8

Discussion

This chapter discusses key issues that have not been addressed earlier in this
dissertation. We start by exploring alternative designs for membership man-
agement. Next, we evaluate our assumption of synchrony. Finally, we show
that our solution is applicable for constructing intrusion-tolerant overlay net-
works other than the one we described in the previous chapter.

8.1 Membership Management

The problem of maintaining membership has been extensively researched.
A wide range of algorithms and protocols exist. Membership maintenance
is closely related to the theoretical concept of unreliable failure detection
oracles, which output hints about which processes in a system have crashed.
There exist an extensive body of theoretical work on the subject, starting
with the seminal papers by Chandra et al. [28, 30]. Many of the algorithms
and protocols that have been proposed solve consensus or leader election
in all executions. Although, consensus can be used to solve the problem
of maintaining membership, the proposed solutions are often impractical,
inefficient, or insecure.

8.1.1 No Membership

In broadcast and multicast enabled networks, group communication primi-
tives can be implemented without maintaining membership information. If
multiple concurrent groups are to coexist on a single broadcast network, the
underlying system must provide some mechanism to isolate messages be-
tween each group. For instance, the V system [32] solves this by having each
V kernel maintain a local process table with mappings between group iden-

109

tities and process identities. Messages include the identity of the group that
they are addressed to. Each V kernel will then use its local process table to
deliver inbound broadcast messages to those processes that have previously
registered themselves as members of the destination group.

If the network provides multicast, the V system leverages this by assigning
each group identity to a multicast address. If there are more groups than
multicast addresses then some groups will share the same address. As with
broadcast, groups sharing a multicast address are isolated from one another
by filtering messages based on the local process tables.

Currently, neither network level multicast nor network level broadcast are
generally available in the Internet [47]. Also, some overlay-network opera-
tions, like lookup operations in DHTs, require explicit membership informa-
tion. Although membership information can be retrieved by broadcasting
probe messages, such operations are expensive and, if frequently used, might
warrant the use of a group membership protocol.

8.1.2 Partial Membership

An alternative to providing views containing all members or not to provide
views at all is for a membership protocol to provide views containing a small
subset of all members. We refer to such protocols as partial membership
protocols. Although the number of members contained in each view might
vary from protocol to protocol, the view sizes are usually small compared
to the total number of members. As a minimum, a member m’s view will
contain those members that are to be m’s neighbors. The view sizes can
grow with the number of members, but the growth rate is usually slow.

Scamp [59] is an epidemic-style membership protocol that, like Fireflies ,
uses a small number of gossip partners in order to increase scalability. Unlike
Fireflies , Scamp members do not forward membership events to all members
but will stop forwarding them when certain criteria are met. The Scamp
protocol is not intrusion-tolerant. A Scamp member can become isolated,
in which case, that member is required to rejoin. Also, the Scamp mesh can
converge to a non-random structure. Cyclon [148] provides an improve-
ment over Scamp by using a distributed shuffling algorithm to maintain
randomness even with high node churn. Unlike Cyclon, Fireflies maintains
a pseudo-random overlay structure by assigning neighbors based on multi-
ple pseudo-random permutations of the membership views. Other partial
membership protocols include those of the overlays that are described in
Section 2.1.

One reason for providing partial membership rather than full membership
is increased scalability. In a full membership protocol, memory requirements

110

per member will grow linearly with the number of members. Given the
availability of cheap memory this is not necessarily a problem. For instance,
with member certificates of 163 bytes and a notes of 49 bytes, Fire will be
able to fit approximately 100000 members within 20 MB of memory.

Full membership protocols also require that all group members receive
notification of all membership changes. By requiring members to only receive
notifications about a subset of the members, partial membership protocols
offer a potential increase in scalability due to reduction in network load.
This difference might be significant because the churn rate, and hence the
subsequent aggregate rate of membership events, tends to grow linearly with
the size of the membership.

Although advantageous with regard to scalability, providing members
with only a partial view has several disadvantages compared to providing
them with full membership information. First, partial membership requires
messages to be routed through the overlay structure. As such, messages are
more likely to get lost along the way and encounter higher end-to-end latency.

Secondly, existing overlay routing protocols built on top of a full mem-
bership protocol can be more efficient than if built on a partial membership
protocol. For example, a full membership protocol provides Application-
Level Multicast (ALM) protocols with a large candidate set of router nodes
for building routing trees, which can significantly increase efficiency and ro-
bustness [113].

Third, maintaining strict structures like DHTs requires complex and ex-
pensive coordination when having only partial membership information [127,
139, 155].

Fourth, full membership protocols and one-hop routing are seemingly
easier to secure than partial membership protocols [22]. Also, as argued in
Section 3.4, multi-hop routing is more expensive to make tolerant to omission
attack than direct messaging.

8.1.3 View-Synchronous Membership

View-synchronous membership protocols are widely used in Group Commu-
nication Systems (GCSs) to facilitate multicast with total or causal ordered
delivery semantics in partially synchronous networks. Example of such GCSs
are Horus [145], Totem [104], and Transis [48]. A comprehensive survey of
these and others, can be found in the study by Chockler et al. [33]. A survey
of multicast algorithms is provided by Défago et al. [44].

In a dynamic environment with churn, GCSs must take into considera-
tion the possibility that the group composition can change during message
transmission. If this is not addressed, incomplete delivery or missing mes-

111

sages in the causal ordering might occur. Most GCSs approach this problem
by implementing some variant of the virtual synchrony property by ordering
view changes along with multicast messages such that communication ap-
pears synchronous from an external point-of-view [17]. Programming models
that provide this property include the strong [58], weak [58], optimistic [143],
and extended [104] virtual synchrony models.

All variants of virtual synchrony provide the same view delivery property,
which states that all members that receive a message m must do so in the
same view v, and that v is the same or a later view in which m was sent.
Strong view synchrony provides the stronger property of send view delivery,
which adds the requirement that a message must be delivered in the same
view in which it is sent. The extended virtual synchrony model allows all
components of a partitioned group to continue operating independently and
later rejoin. The weak and optimistic virtual synchrony models mitigate
the inefficiency of blocking or discarding messages during view changes, as
required by the strong virtual synchrony model.

In all these models, it is the responsibility of some membership protocol to
ensure that correct and connected members will agree upon the sequence of
views such that messages can be delivered correctly. Such view-synchronous
membership protocols are run whenever a change in the group has been
detected, for instance, due to a suspicion by a failure detector or upon noti-
fication of a new member joining. After the network stabilizes, the protocols
terminate with a new view installed at each member.

View-synchronous membership can trivially be implemented using con-
sensus. Although agreement on the views is a weaker problem than the
problem of consensus, Chandra et al. [29] show that the weaker conditions
do not circumvent the impossibility of consensus in asynchronous networks
when processes may fail [56].

Scalability Issues. The Totem system [6] organizes members in a logi-
cal token ring. Upon detection of a change in the membership, the Totem
single ring membership protocol enters a gather phase where each member
m broadcasts a join message containing m’s current view of all group mem-
bers and their apparent status as either live or crashed. If m receives a join
message containing a different view than its own, then m merges that view
with its own and restarts the gather phase. If m times out waiting for a
join message from one of the members in its view, then that member will
be tagged as crashed and m restarts the gather phase. If m receives the
same view from all live members within its view, then m considers consen-
sus to be established. In this case and if m has the lowest process identity

112

of all live members within the proposed view, then m will start circulating
a commit token containing the proposed view. The commit token is circu-
lated twice. In the first circulation, members establish that they all have the
same view. The second circulation commits that view. If some member m
detects that the commit token is lost, or other inconsistencies are detected,
then m restarts the gather phase. By recursively removing slow and unstable
members from the membership, the Totem single ring membership protocol
will terminate in bounded time with an agreed upon view. Due to their se-
rial nature, ring-based token passing protocols are generally not suited for
wide-area Internet environment where packet latencies can be high.

The SecureRing protocol [86] is similar to the Totem single ring member-
ship protocol and thus suffers from the same problems. Unlike Totem and
Fireflies , the SecureRing protocol is augmented with a Byzantine failure de-
tector. Detectable Byzantine behavior that SecureRing can tolerate includes
mutant messages, improperly formed messages, and missing messages. A
SecureRing member m considers the gather phase completed when m has
received join messages containing the same view as its own from at least
2/3 of the members. The SecureRing protocol uses an expensive multicast
abstraction where each member will multicast each message at least once
before it is delivered locally.

Our approach to intrusion-tolerant membership management is different
than that of SecureRing in that Fireflies does not try to detect and remove
Byzantine members. However, unmistakable evidence of Byzantine behavior,
like a malformed and signed message, can be distributed by the Fireflies
gossip protocol to exclude misbehaving members.

In an extension of the Totem single ring membership protocol, scalabil-
ity is improved by interconnecting multiple Totem rings using a small set of
gateway processes [3, 104]. Each individual ring runs the single ring mem-
bership protocol, as previously described, in order to decide on a view. The
multiple ring variant of the Totem membership protocol does not tolerate
Byzantine failures. It is not clear if the SecureRing protocol can be extended
in the same way.

The Horus membership protocol [58] avoids the high-latency problems
relating to token ring passing by electing for each view change the process
with the lowest identifier as a coordinator. Members exchange views in join
messages similarly to Totem, although in Horus they are sent point-to-point
to the designated coordinator and not broadcasted to all members. To es-
tablish agreement the coordinator broadcasts two views. First, it broadcasts
a suggested view. If that view is acknowledged by all members, then the
coordinator broadcasts a final view, which all members accept as the next
view.

113

The Bft protocol [26] adds tolerance to Byzantine failures to a Horus
like membership protocol by having members broadcast view messages to
all members instead of only to the coordinator. Each member computes
the coordinator based on the received view messages and sends a view-ack
message to that member. After receiving view-ack messages from a member
quorum, the primary broadcasts the new view. Bft can tolerate up to
1/3 Byzantine members but does not scale well as each member is involved
in several rounds of communication. Fireflies provides only probabilistic
guarantees.

Network Instability. Although view synchronous membership protocols
like Totem, Horus, and SecureRing provide agreement on membership views,
they can not guarantee that the delivered views do not contain stale entries
since members might crash at any point in time. In particular, the Totem
protocol might terminate in a singleton membership if sufficient network
instability occurs, which is a highly undesirable situation.

It is also inefficient to require view-synchronous membership protocols to
terminate during periods of instability because the delivered views will likely
be obsolete before or shortly after delivery, thus requiring a rerun of the
expensive agreement protocol. Although more aggressive timeout values will
ensure quicker response-time to crashes, such a policy is counter productive
with regards to throughput because the system will spend more time running
the membership protocol [69]. To reduce load during periods of network
instability, the Moshe membership protocol [84] delays view delivery until
the network has stabilized. In overlay networks, where frequent and long
periods of instability are expected, Moshe might be prevented from delivering
updated views for long periods of time. Delaying view delivery does not
prevent services from seeing stale view entries.

An alternative approach, used in Horus [58], is the weak virtual syn-
chrony model. This model allows applications to continue sending messages
using a temporary view while agreement is established. The temporary view
must, however, be a superset of the agreed view. The integration of recov-
ered and added members must therefore be delayed until a new view can be
established. The optimistic view synchrony model [143] also uses temporary
views but does not pose any restriction on how the temporary view relates
to the later agreed view. Instead, applications are allowed to send optimistic
messages that will be buffered at the receivers until an agreed view is estab-
lished. Depending on the outcome of the membership agreement protocol,
optimistically delivered messages are either delivered to the application or
discarded.

114

Applicability in Overlay Networks. Although view-synchronous mem-
bership protocols are widely used in the context of GCSs, they have not
gained popularity as building blocks for overlay networks. The main reason
is the inherent lack of scalability in virtual synchronous type of communi-
cation, which is due to the cost associated with view changes and packet
loss [69]. Birman et al. [16] argue from a practical point-of-view that the vir-
tual synchronous communication is only suited for groups with less than 100
members. Adding tolerance to Byzantine failures through Byzantine agree-
ment only increases overhead. Since most overlay networks do not use strong
semantic on message delivery, they can avoid the overhead and complexity
of view-synchronous membership protocols.

8.1.4 Weakly-Consistent Membership

Many membership protocols, including Fireflies , strive to provide to each
member an up-to-date view of all group members, but do not provide agree-
ment on the views. For instance, the epidemic membership protocol described
by van Renesse et al. [146], provide only eventual view agreement. Unlike
Fireflies , this protocol does not distribute suspicion events. Instead, each
member increments a heartbeat counter in each gossip round and gossips the
new counter. Each member can then individually detect the absence of heart-
beat increments of other members using timeouts. Although highly robust,
overhead is substantial and the protocol does not scale well as each member
must receive updates to the heartbeat counters of all live members.

The GulfStream system [55] reduces the load of heartbeat style failure de-
tection by organizing members in a logical ring. Each member then monitors
its successor and predecessor in the ring. To reduce the rate of false positives,
a member is only considered failed if suspected by both its monitors.

Congress [8] provides membership service for wide-area network en-
vironment with weak semantics similar to Fireflies . The protocol is made
scalable by organizing the members in a hierarchical manner. The system is
vulnerable to attack as a malicious member can efficiently prevent commu-
nication between subtrees. Congress does not include a failure detection
mechanism but requires members to send failure notifications when stop-
ping. Alternatively, it can be extended with an external failure detection
mechanism.

The Swim protocol [42] is perhaps most similar to Fireflies in that it com-
bines an accusation-rebuttal scheme with a pinging protocol and epidemic
dissemination. Unlike Fireflies , in each pinging round, a Swim member mi

picks from its view a random member mj for pinging. If mi does not re-
ceive an acknowledgment from mj within a specified timeout, mi selects k

115

random members from its view as delegates and ask those to ping mj in-
stead. If the delegates succeed in pinging mj, then they relay the received
acknowledgement back to mi. If unsuccessful, mi will issue an accusation for
mj.

Although the Swim pinging scheme will prevent a Byzantine member
from keeping failed members within the views of correct members, Swim can
not prevent an attacker from repeatedly making false accusations. Also, the
delegation of pinging adds to the time it takes for a crashed member to be
removed from the views of the correct members. More alarmingly, the Swim
protocol allows members to issue failure messages. Upon mi receiving a fail-
ure message for mj, mi will immediately remove mj from its view. There are
no restriction on who can generate failure messages for whom. An attacker
can therefore use failure messages to falsely claim that a correct member
has failed. Unlike Fireflies , Swim piggybacks membership events on ping
messages, which prevents Swim from taking advantages of set-reconciliation
mechanisms to reduce the number duplicate events sent and received. Swim
does not impose restrictions on member neighbor selection like Fireflies . This
makes the Swim protocol more susceptible to DoS attacks.

8.2 Timing Attacks

Making assumption on timings is risky because an attacker might break
expected timing bounds by slowing down the system [26]. Because this dis-
sertation assumes synchrony, our solution is subject to such attacks.

First, we assume that correct members have access to accurate clocks.
This assumption is unproblematic as most modern computers have accurate
hardware clocks embedded on their motherboard. Also, because a member
certificate is only valid before its expiry date, clocks must be synchronized
with an accuracy in the order of minutes. This is also unproblematic as
external sources of time that provide this level of accuracy are readily avail-
able (e.g., gps). Because hardware clocks are local at each member they are
highly resilient to DoS attacks.

Secondly, we assume a known upper bound on message delivery between
correct members. This assumption on communication synchrony is used in
two places within Fireflies . First, we assume an upper bound ∆ on the time
for a message to be disseminated to all members using gossip. Secondly,
we assume that a correct member can respond to at least one ping message
before the failure detection timeout period, τ × Tping, expires. If an attacker
can slow-down the network sufficiently for messages to take longer than the
specified upper bounds, Fireflies might not operate correctly. We will in the

116

following describe the consequences of a successful DoS attack.

8.2.1 Violation of Timing Bounds

For Fireflies , a successful DoS attack can lead to the following:

• a correct member is incorrectly considered crashed,

• a crashed member is incorrectly considered live, and

• two members disagree on the status of some member.

Such inconsistencies are unproblematic on a small scale because Fireflies
does not provide agreement on the views and does not attempt to exclude
erratic members. Services built on top of Fireflies can consider a member
that is under a DoS attack as faulty. The tolerance to Byzantine failures can
then be adjusted according to the expected strength of the attacker.

However, if the attacker is sufficiently strong he might slow down a suffi-
cient number of members such that the remaining correct members will have
views and neighborhoods containing too many Byzantine members. Fireflies
can not withstand such massive all-out timing attacks. Due to our design,
we conjecture that the resources needed to execute such attacks is outside
the reach of most people and organizations. In practice, Fireflies might not
be the weakest link against such an adversary.

8.2.2 Weaker Models of Synchrony

There are many possible system models weaker than the one assumed in this
dissertation and that would make it harder for an attacker to break assumed
timing bounds. Of particular interest are those that are sufficiently strong
to implements a leader election oracle, Ω. Having Ω, consensus, and hence
membership, can be solved.

One way to weaken the model of synchrony is to assume timing bounds,
but not assume that those bounds are known. In such a model, Ω can be
implemented using a heartbeat approach, as described in Section 8.1.4, but
modified such that timeout values are gradually increased until no member
is falsely suspected [94].

Several recent works have shown that Ω can be implemented in envi-
ronments where only some links are eventually timely. Such links have the
property that there is some time after which all messages sent take a bounded
time to be received. For instance, Aguilera et al. [5] show that in a network
of N processes where f can fail, an Ω oracle is possible if there exists some

117

member, m, with at least f outbound links that are eventually timely. Hutle
et al. [76] weaken this model further, requiring that the condition on m only
eventually occurs.

Although these results show that consensus can be implemented under
surprisingly weak assumptions of synchrony, implementing Ω under these
assumptions would be impractical and prohibitively expensive. Hutle et al.
argue that there is a clear tradeoff between message complexity and relaxed
synchrony [76]. For instance, the model of Aguilera et al. requires f links
to carry messages forever in some runs. The weaker model of Hutle et al.
increases this number to nf/2.

Although the Internet is commonly considered asynchronous, we argue
that our stronger assumption on message delivery bounds are reasonable
because our timing bounds, which are in the order of minutes, are large in
comparison with the expected Internet end-to-end latencies and packet-loss
rate.

8.3 Applicability

Although Fire maintains membership information in an intrusion-tolerant
manner, services built on top of it do not automatically inherit this prop-
erty [129]. For instance, to ensure safe storage of files, a service built on top
of Fire must still ensure that each file is replicated to a sufficiently large
number of members.

Numerous approaches address Byzantine failures in distributed systems,
starting with [93, 110]. One popular approach is to implement services us-
ing State Machine Replication (SMR) [92, 131]. In essence, SMR works by
having each server start in the same state, then they execute the same set
of deterministic instructions with the same input. Hence, all correct replicas
produce the same output. Clients mask invalid responses from faulty replicas
using majority voting. Generally, SMR systems are not considered scalable
because each write operation requires involvement of all member processes.
Also, SMR limits a system’s aggregate storage capacity to the smallest stor-
age capacity available at a member. Systems and protocols based on SMR
include bft [26], SecureRing [87], and Rampart [118].

Byzantine quorums system [98, 99, 100] offer an alternative to SMR. A
quorum system divides members into multiple overlapping subsets. Each
quorum can operate on behalf of all servers. The intersection between the
quorums guarantees consistency of replicated data. By having a sufficiently
large overlap, Byzantine failures can be masked.

By combining optimistic execution with quorum operations, the Q/U pro-

118

tocol [1] is shown to produce a peak throughput that is four times higher
than the bft protocol [26] when five faults can be tolerated. However, the
throughput of the protocol drops when there is contention among concurrent
update operations. To resolve such contentions, the Q/U protocol employs
exponential back-off. The hq protocol [38] improves upon the Q/U protocol
by resolving contention using the Bft protocol.

Although both quorums systems and SMR systems can be built on top
of an intrusion-tolerant membership protocol like Fireflies , they might be to
expensive to run on a large number of members. Rodrigues et al. [125] suggest
that the scalability limitations of these protocols can be mitigated using a
hybrid P2P architecture where smaller sub-groups of members specialize at
certain tasks. For instance, they propose a scheme where a small group
of members are selected to provide a configuration service that maintains
membership information. Similar schemes have been implemented within
P2P file systems like OceanStore [120] and Farsite [2]. How general hybrid
P2P architectures can be constructed on top of Fire is left as future work,
although we have already approached the issue through the separation of
clients and mirror roles within FirePatch, as described in Chapter 7.

We will in the remanding of this section outline two other overlay networks
that can be constructed using Fire.

8.3.1 One-Hop Distributed Hash Table

Intrusion-tolerant DHT messaging can be trivially implemented on a full
membership protocol. Assuming object and member identifiers are chosen
from the same identifier space, a member can simply consult its view to find
the member whose identity is closest to the object identity. That member is
then the destination, and messages can be sent directly to it. Such an im-
plementation is called an One Hop Distributed Hash Table (OHDHT)1 [68],
as messages are not routed through intermediate members. If replication is
required to, for instance, securely store a file, multiple Fireflies member rings
can be used to assign to each message multiple destinations.

8.3.2 Multimedia Streaming

SecureStream [73] is an intrusion-tolerant multimedia diffusion protocol that
layers a push-pull messaging scheme [109] on top of Fire, in a similar manner
as FirePatch. Like security patch distribution, multimedia dissemination is

1Not to be confused with an O(1) hop DHT, although OHDHTs are members of that
class.

119

sensitive to delay. However, within a multimedia stream, late packets are
considered to be permanently lost and will not be recovered. For instance,
SecureStream members only request data that are within a moving window of
interest. To reduce overhead of packed authentication, SecureStream groups
hashes of multiple packets into a special linear digest message. The system
ensures that digest messages are delivered to members before they receive
the corresponding data messages.

By not forwarding data messages and digests, and by over requesting, an
attacker might try to delay the reception of a multimedia segment such that
it is no longer usable for the receivers. With a sustained rate of 300 Kilobits
per second (kbps), SecureStream is shown to deliver a higher ratio of packets
within acceptable time than SplitStream [24] when under attack.

120

Chapter 9

Conclusions

For an Internet service to accommodate increasing load and complexity, hard-
ware resources must be added to it. P2P overlay networks offer an alternative
by utilizing existing hardware resources available in the commodity class com-
puters that are owned by those that use the service. Because an attacker can
gain control of overlay-network components simply by joining, overlay net-
work should be constructed in an intrusion-tolerant manner such that they
are able to fight maliciously induced Byzantine failures.

9.1 Results

This dissertation identifies intrusion-tolerant membership management as a
key function of an intrusion-tolerant overlay network. As stated in Sec-
tion 1.2.3, the thesis of this dissertation is:

Using epidemic techniques it is possible to build overlay networks
and peer-to-peer systems that strike a useful balance between intrusion-
tolerance and resource usage.

To evaluate our thesis we designed Fireflies , a weakly consistent member-
ship management protocol. Next, we implemented Fire, an overlay-network
framework based on the Fireflies protocol. As a case study, we implemented
a software dissemination network, FirePatch, using Fire.

Our solution involves a central CA that is entrusted to assign to each
member a random identity. The CA is also required to do background checks
on each member such that the fraction of Byzantine members among all
members is probabilistically upper bounded by a certain Pbyz. Although
having a centralized CA is not ideal for overlay networks, we are currently
not aware of other suitable mechanisms to bound the fraction of Byzantine

121

members. The CA is considered an off-line component in that it is only
involved in signing and revoking member certificates. In particular, the CA
is not involved in maintaining up-to-date membership information. Instead,
this is done by having members monitor one another and issue accusations
(failure notices) whenever a member is suspected to have crashed.

If a member is falsely accused, it has the opportunity to issue a rebut-
tal before it is removed from the views of correct members. For scalability
reasons, a member can only monitor a subset of the other members. The
challenge is to guarantee that each member has at least one correct monitor
and, at the same time, prevent Byzantine members from frequently falsely
accusing correct members. We address this by organizing members in k
circular address spaces, or member rings. Each ring is a pseudo-random per-
mutation of the membership list and is calculated deterministically from the
secure hash of the member identities in combination with a ring identifier.
Each ring imposes successor and predecessor relationships on the members
such that, with k rings, each member has a total of k successors and k pre-
decessors. By picking a sufficiently large number of rings, each member will
be able to disable all Byzantine monitors while, at the same time, ensuring
that all members have at least one correct monitor.

Accusations and rebuttals are disseminated to all members using a se-
cure broadcast channel, which we implemented by having members gossip
with one another. To limit the ability of an attacker to launch an all-out
DoS attack, a member is only allowed to gossip with a small subset of the
members. We assign gossip partners by organizing the members in a strict
pseudo-random mesh structure based on a set of member rings, similarly to
how we assign monitoring responsibilities. By adjusting the number of gos-
sip rings, correct members form a connected sub-mesh with high probability,
rendering omission attack ineffective.

In Section 1.2.3 we listed three properties that would measure the success
of our solution: scalability, intrusion-tolerance, and applicability. We will in
the following show to what extent each of these attributes are fulfilled.

• Intrusion-tolerance. Chapter 3 listed two key design requirements for
intrusion-tolerant membership management. As shown in Figure 9.1,
Fireflies fulfills Requirement 1 using a central CA that safely assigns
member identities. Requirement 2 is fulfilled by imposing a strict
pseudo-random structure on the overlay-network topology, which is fa-
cilitated by the Fireflies membership rings. Our claims are supported
by mathematical and statistical reasoning and simulations. Our eval-
uations have shown that our implementation of Fireflies in Fire can
withstand passive and active membership attacks from as many as 20%

122

Full Membership −→ Requirement 3

Membership Rings −→ Requirement 2

Central CA −→ Requirement 1

Figure 9.1: The Fireflies overlay-network stack

of the members. We have also observed in our experiments with Fire
on PlanetLab various unexpected behavior on certain nodes. Some-
times the local file system on a node disappears or runs out of disk
space, preventing logs to be written. Sometimes nodes are wrongly
configured with a non-routable IP address. Sometimes nodes become
unaccessible due to network outages, cpu overload, or rarely, actual
crashes. There have even been bugs in Fire agents causing them to
crash or behave erratically. But the Fire infrastructure as a whole has
survived all of these problems.

• Scalability. We have shown that, in a dynamic PlanetLab like environ-
ments, Fire can maintain membership information in overlay networks
with 280 members. Measured overhead in this setting is in the order
of 50 Bps under normal load, and up to 500 Bps when approximately
1/4 of the members crash at the same time. Our simulations have
shown that the rate of membership events grow close to linearly with
the number of members. This indicates that Fire is able to support
group sizes in the order of thousands of members on current wide-area
Internet network technology. By providing full membership informa-
tion, applications can avoid the cost of multi-hop overlay routing, thus
Requirement 3 is fulfilled as shown in Figure 9.1.

• Applicability. To show the applicability of our solution, Chapter 7
describes and evaluates FirePatch, an intrusion-tolerant software se-
curity patch distribution mechanism, built using Fire. By combin-
ing encryption, replication, and sandboxing with the intrusion-tolerant
membership service provided by Fire, FirePatch enables end-users to
fight attacks by hackers that exploit software vulnerability by reverse
engineering software patches. Section 8.3 discusses other areas of appli-
cability, including a multimedia-streaming network that has been built
using Fire.

There are clear limitations to what our solution can offer. Byzantine
members can disguise themselves as correct members by executing the pro-

123

tocol, or as crashed members by not executing at all, and so a correct member
can not determine which members are Byzantine unless they reveal them-
selves as such by sending messages that prove they are not following the
protocol. Also, views trail membership changes, and might be stale at any
time. Fireflies does not provide virtual synchrony properties like agreement
on the views. Instead, it provides eventual and probabilistic consistency
among the views of the correct members. Given constant churn, members
might never reach agreement on the state of the membership. Although,
with high probability, correct members’ views will agree on the set of long
time correct members and on the set of long time crashed members. It is,
however, possible that long time crashed members are temporarily included
in the views of correct members due to cascading invalidation of accusa-
tions. The Fireflies protocol makes such inconsistent states infrequent, with
probabilistic guarantees.

While our solution is not as scalable as Pastry, not as secure as Bft,
and not as applicable as Horus, we have found a novel combination of these
attributes that is useful for constructing intrusion-tolerant overlay networks.

9.2 Future Work

Although this dissertation has focused on intrusion-tolerance, the masking of
Byzantine faults is, as argued in Section 1.2, only one of many overlapping
and complementary tools for increasing the level of security in a system. The
integration of a larger set of such techniques within Fire is an interesting
topic of future work. For instance, mechanisms for host-based intrusion de-
tection [52, 126], recovery [35, 63], and pro-active reboots [25, 26] could be
used to limit the ability of an attacker to break in and maintain control of
computers that are not his own. Here, one interesting approach is to mini-
mize the inconvenience of downtime by using high-level application mobility
to move running applications to a temporary location while the underlying
system is rebooting. We observed in an earlier paper that many legacy ap-
plication could be instrumented with such mobility without any modification
to their code [77].

An important approach to fighting attacks is to detect and exclude mem-
bers that are misbehaving [70, 86, 88]. For instance, Fire should be extended
with a rate monitoring module that detects and excludes members that gener-
ate excessive amounts of notes and false accusations. Also, incorrectly signed
or badly formatted messages are clear indications of misbehaving members,
which should lead to exclusion of the sender. Future work should extend
Fire with this capability.

124

Another interesting direction for future work is, as described in Sec-
tion 8.3, to increase the scalability and efficiency of Fire by using a hy-
brid P2P structures where members are specialized to perform certain tasks.
Members can, for instance, be dynamically allocated to specialization sub-
groups based on certain properties like their disk, cpu, or network capacity.
Such structures have already been proposed [2, 120, 125] and seem to be a
promising direction for P2P overlay networks.

125

126

Appendix A

Publications

This dissertation is based on work presented in the following four publica-
tions:

Paper I

H̊avard Johansen and Dag Johansen. Improving object search
using hints, gossip, and supernodes. In Proceedings of the 21st
Symposium on Reliable Distributed Systems: Workshop on Re-
liable Peer-to-Peer Distributed Systems, pages 336–340. IEEE,
October 2002.

In this paper we present a P2P object search protocol that reduces network
load by caching past queries as hints for future searches. The idea is that if
some member m submits a query, it is likely to find and download match-
ing objects. Member m is therefore a likely candidate to match similar
queries. Such queries should therefore be forwarded to m in order to im-
prove forwarding accuracy. A hint gossiping scheme is added to prevent
objects from becoming isolated and to increase efficiency. The paper show
that hint caching increases efficiency while providing similar lever of recall
compared to a Gnutella type of query flooding. The paper does not address
intrusion-tolerance and membership maintenance. The protocol is described
in Section 2.1 as part of our survey of existing systems.

Paper II

Dag Johansen, H̊avard Johansen, and Robbert van Renesse. En-
vironment mobility—moving the desktop around. In Proceedings
of the 2nd Workshop on Middleware for Pervasive and Ad-hoc
Computing, pages 150–154. ACM, October 2004.

127

In this paper we outline how high-level application mobility can be used to
move a user’s computational environment from one computer to another. We
observed that many legacy applications could be instrumented with such mo-
bility by adding an external signalling and state-transfer process. The paper
motivates this dissertation because it identified the need for an intrusion-
tolerant overlay network that makes marshalled application state available
to a user as he moves from one computer to another. This dissertation lists
the use of high-level application mobility as a possible support function for
pro-active reboots in Section 9.2.

Paper III

H̊avard Johansen, André Allavena, and Robbert van Renesse.
Fireflies: Scalable support for intrusion-tolerant network overlays.
In Proceedings of the 1th EuroSys Conference, pages 3–13. ACM,
October 2006.

In this paper we present Fireflies as described in this dissertation. The bulk
of the paper is contained within Chapter 4 and Chapter 6 of this dissertation.
A few items are also contained in Chapter 5.

Paper IV

H̊avard Johansen, Dag Johansen, and Robbert van Renesse. FirePatch:
Secure and time-critical dissemination of software patches. In
Proceedings of the 22nd International Information Security Con-
ference, pages 373–384. IFIP, Springer-Verlag, May 2007.

In this paper we present FirePatch as described as a case study in Chapter 7
of this dissertation. The papers shows that Fire and Fireflies can be used
to solve a real and important problem.

128

References

[1] Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson,
Michael K. Reiter, and Jay J. Wylie. Fault-scalable Byzantine fault-
tolerant services. In Proceedings of the 20th Symposium on Operating
Systems Principles, pages 59–74. ACM, October 2005.

[2] Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak, Ron-
nie Chaiken, John R. Douceur, Jon Howell, Jacob R. Lorch, Marvin
Theimer, and Roger P. Wattenhofer. FARSITE: federated, available,
and reliable storage for an incompletely trusted environment. In Pro-
ceedings of the 5th Symposium on Operating Systems Design and Im-
plementation, pages 1–14. USENIX, December 2002.

[3] Deborah A. Agarwal, Louise E. Moser, Peter M. Melliar-Smith, and
Ravi K. Budhia. The Totem multiple-ring ordering and topology main-
tenance protocol. ACM Transactions on Computer Systems, 16(2):93–
132, May 1998.

[4] Sachin Agarwal and Ari Trachtenberg. Practical set reconciliation
implementation. Software Version Beta 0.998, Boston University,
http://ipsit.bu.edu/programs/reconcile/, June 2004.

[5] Marcos K. Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and
Sam Toueg. Communication-efficient leader election and consensus
with limited link synchrony. In Proceedings of the 23rd Symposium on
Principles of Distributed Computing, pages 328–337. ACM, July 2004.

[6] Yair Amir, Louise E. Moser, Peter M. Melliar-Smith, Deborah A. Agar-
wal, and Paul Ciarfella. The Totem single-ring ordering and member-
ship protocol. ACM Transactions on Computer Systems, 13(4):311–
342, November 1995.

[7] Thomas Anderson, Larry Peterson, Scott Shenker, and Jonathan
Turner. Overcoming the Internet impasse through virtualization. IEEE
Computer, 38(4):34–41, April 2005.

129

http://ipsit.bu.edu/programs/reconcile/

[8] T. Anker, G. Chockler, D. Dolev, and I. Keidar. Scalable group mem-
bership services for novel applications. In Networks in Distributed Com-
puting, volume 45 of DGIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pages 23–42. American Mathematical
Society, January 1998.

[9] William A. Arbaugh, William L. Fithen, and John McHugh. Windows
of Vulnerability: A case study analysis. IEEE Computer, 33(12):52–59,
December 2000.

[10] Algirdas Avižienis, Jean-Claude Laprie, Brian Randell, and Carl
Landwehr. Basic concepts and taxonomy of dependable and secure
computing. IEEE Transactions on Dependable and Secure Computing,
1(1):11–33, January 2004.

[11] Gal Badishi, Idit Keidar, and Amir Sasson. Exposing and eliminat-
ing vulnerabilities to denial of service attacks in secure gossip-based
multicast. IEEE Transactions on Dependable and Secure Computing,
3(1):45–61, March 2006.

[12] Paul Barford and Joel Sommers. Comparing probe- and router-based
packet-loss measurement. IEEE Internet Computing, 8(5):50–56, Oc-
tober 2004.

[13] Elaine Barker, William Barker, William Burr, William Polk, and Miles
Smid. Recommendation for key management–part 1: General (revised).
Special publication 800-57, National Institute of Standards and Tech-
nology, May 2006. Draft.

[14] Luiz André Barroso, Jeffrey Dean, and Urs Hölzle. Web search for
a planet: The Google cluster architecture. IEEE Micro, 23(2):22–28,
March 2003.

[15] Rida A. Bazzi and Goran Konjevod. On the establishment of distinct
identities in overlay networks. In Proceedings of the 24th Symposium on
Principles of Distributed Computing, pages 312–320. ACM, July 2005.

[16] Kenneth P. Birman, Bob Constable, Mark Hayden, Jason Hickey,
Christoph Kreitz, Robbert van Renesse, Ohad Rodeh, and Werner Vo-
gels. The Horus and Ensemble projects: Accomplishments and limita-
tions. In Proceedings of the 2000 Information Survivability Conference
and Exposition, pages 149–161. DARPA, January 2000.

130

[17] Kenneth P. Birman and Thomas A. Joseph. Exploiting virtual syn-
chrony in distributed systems. In Proceedings of the 11th Symposium on
Operating Systems Principles, pages 123–138. ACM, November 1987.

[18] Burton H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, July 1970.

[19] Jean-Chrysostome Bolot. Characterizing end-to-end packet delay and
loss in the Internet. Journal of High Speed Networks, 2(3):305–323,
December 1993.

[20] Hilary K. Browne, William A. Arbaugh, John McHugh, and William L.
Fithen. A trend analysis of exploitations. In Proceedings of the 2001
Symposium on Security and Privacy, pages 214–229. IEEE, May 2001.

[21] John Byers, Jeffrey Considine, and Michael Mitzenmacher. Fast ap-
proximate reconciliation of set differences. Technical report 2002-019,
Boston University, July 2002.

[22] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron,
and Dan S. Wallach. Secure routing for structured peer-to-peer overlay
networks. In Proceedings of the 5th Symposium on Operating System
Design and Implementation. USENIX, December 2002.

[23] Miguel Castro, Peter Druschel, Y. Charlie Hu, and Antony Rowstron.
Proximity neighbor selection in tree-based structured peer-to-peer over-
lays. Technical report MSR-TR-2003-52, Microsoft Research, 2003.

[24] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh
Nandi, Antony Rowstron, and Atul Singh. SplitStream: High-
bandwidth multicast in cooperative environments. In Proceedings of
the 19th Symposium on Operating Systems Principles, pages 298–313.
ACM, October 2003.

[25] Miguel Castro and Barbara Liskov. Proactive recovery in a Byzantine-
fault-tolerant system. In Proceedings of the 4th Symposium on Operat-
ing System Design and Implementation. USENIX, October 2000.

[26] Miguel Castro and Barbara Liskov. Practical Byzantine fault toler-
ance and proactive recovery. ACM Transactions on Computer Systems,
20(4):398–461, November 2002.

[27] Olivier Chalouhi, Alon Rohter, and Paul Gardner. Azureus. Software
version 2.5.0.0, SourceForge, http://sourceforge.net/projects/

azureus/, August 2006.

131

http://sourceforge.net/projects/azureus/
http://sourceforge.net/projects/azureus/

[28] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The
weakest failure detector for solving consensus. Journal of the ACM,
43(4):685–722, July 1996.

[29] Tushar Deepak Chandra, Vassos Hadzilacos, Sam Toueg, and
Bernadette Charron-Bost. On the impossibility of group member-
ship. In Proceedings of the 15th Symposium on Principles of Distributed
Computing, pages 322–330. ACM, 1996.

[30] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors
for reliable distributed systems. Journal of the ACM, 43(2):225–267,
March 1996.

[31] Andrew Chasin. The Gnutella protocol specification. Specification
Version 0.41, Clip2 Distributed Search Solutions, June 2001. Document
revision 1.2.

[32] David R. Cheriton and Willy Zwaenepoel. Distributed process groups
in the V kernel. ACM Transactions on Computer Systems, 3(2):77–107,
May 1985.

[33] Gregory V. Chockler, Idid Keidar, and Roman Vitenberg. Group com-
munication specifications: a comprehensive study. ACM Computing
Surveys, 33(4):427–469, December 2001.

[34] Fan Chung and Linyuan Lu. The diameter of random sparse graphs.
Advances in Applied Math, 26(4):257–279, May 2001.

[35] Tzi cker Chiueh and Dhruv Pilania. Design, implementation, and eval-
uation of a repairable database management system. In Proceedings
of the 20th Annual Computer Security Applications Conference, pages
179–188. IEEE, December 2004.

[36] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong.
Freenet: A distributed anonymous information storage and retrieval
system. In Designing Privacy Enhancing Technologies: Proceedings of
the 2000 International Workshop on Design Issues in Anonymity and
Unobservability, volume 2009 of Lecture Notes on Computer Science,
pages 46–66. Springer-Verlag, July 2001.

[37] Manuel Costa, Jon Crowcroft, Miguel Castro, Antony Rowstron, Li-
dong Zhou, Lintao Zhang, and Paul Barham. Vigilante: End-to-end
containment of Internet worms. In Proceedings of the 20th Symposium
on Operating Systems Principles, pages 133–147. ACM, October 2005.

132

[38] James Cowling, Daniel Myers, Barbara Liskov Rodrigo Rodrigues, and
Liuba Shrira. HQ replication: A hybrid quorum protocol for Byzantine
fault tolerance. In Proceedings of the 2006 Symposium on Operating
System Design and Implementation, pages 177–190. USENIX, Novem-
ber 2006.

[39] Russ Cox, Athicha Muthitacharoen, and Robert Morris. Serving DNS
using a peer-to-peer lookup service. In Peer-to-Peer Systems: Revised
Papers from the 1st International Workshop on Peer-to-Peer Systems,
volume 2429 of Lecture Notes on Computer Science, pages 155–165.
Springer-Verlag, March 2002.

[40] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and
Ion Stoica. Wide-area cooperative storage with CFS. In Proceedings of
the 18th Symposium on Operating Systems Principles, pages 202–215.
ACM, October 2001.

[41] Yogen K. Dalal and Robert M. Metcalfe. Reverse path forwarding of
broadcast packets. Communications of the ACM, 21(12):1040–1048,
December 1978.

[42] Abhinandan Das, Indranil Gupta, and Ashish Motivala. SWIM: scal-
able weakly-consistent infection-style process group membership proto-
col. In Proceedings of the 2002 International Conference on Dependable
Systems and Networks, pages 303–312. IEEE, June 2002.

[43] Susheel Daswani and Adam Fisk. Gnutella UDP extension for scalable
searches (GUESS). Specification Version 0.1, Lime Wire LLC, http:
//www.limewire.org/, August 2002.

[44] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast
and multicast algorithms: Taxonomy and survey. ACM Computing
Surveys, 36(4):372–421, December 2004.

[45] Peter J. Denning. Is computer science science? Communications of
the ACM, 48(4):27–31, April 2005.

[46] Peter J. Denning, Douglas E. Comer, David Gries, Michael C. Mulder,
Allen Tucker, A. Joe Turner, and Paul R. Young. Computing as a
discipline. Communications of the ACM, 32(1):9–23, January 1989.

[47] Christophe Diot, Brian N. Levine, Bryan Lyles, Hassan Kassem, and
Doug Balensiefen. Deployment issues for the IP multicast service and
architecture. IEEE Network, 14(1):78–88, February 2000.

133

http://www.limewire.org/
http://www.limewire.org/

[48] Danny Dolev and Dalia Malki. The Transis approach to high availabil-
ity cluster communication. Communications of the ACM, 39(4):64–70,
April 1996.

[49] Wim Dorst. The quintessential Linux benchmark. Linux Journal,
21:online, January 1996.

[50] John R. Douceur. The Sybil attack. In Peer-to-Peer Systems: Revised
Papers from the 1st International Workshop on Peer-to-Peer Systems,
volume 2429 of Lecture Notes on Computer Science, pages 251–260.
Springer-Verlag, March 2002.

[51] Peter Druschel and Antony Rowstron. PAST: A large-scale, persistent
peer-to-peer storage utility. In Proceedings of the 8th Workshop on Hot
Topics in Operating Systems, pages 75–80. IEEE, May 2001.

[52] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Bas-
rai, and Peter M. Chen. ReVirt: Enabling intrusion analysis through
virtual-machine logging and replay. In Proceedings of the 5th Sympo-
sium on Operating System Design and Implementation, pages 211–224.
USENIX, December 2002.

[53] Donald E. Eastlake, III and Paul E. Jones. US secure hash algorithm
1 (SHA1). RFC 3174, The Internet Society, September 2001.

[54] Pál Erdös and Alfréd Rényi. On the evolution of random graphs. Pub-
lications of the Mathematical Institute of the Hungarian Academy of
Sciences, 5:17–61, 1960.

[55] Sameh A. Fakhouri, Germán Goldszmidt, Michael Kalantar, John A.
Pershing, and Indranil Gupta. GulfStream–a system for dynamic topol-
ogy management in multi-domain server farms. In Proceedings of
the 3rd International Conference on Cluster Computing, pages 55–62.
IEEE, October 2001.

[56] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impos-
sibility of distributed consensus with one faulty process. Journal of the
ACM, 32(2):374–382, April 1985.

[57] Halvar Flake. Structural comparison of executable objects. In Proceed-
ings of the 2004 Conference on Detection of Intrusions and Malware
and Vulnerability Assessment, pages 161–173. German Informatics So-
ciety, July 2004.

134

[58] Roy Friedman and Robbert van Renesse. Strong and weak virtual
synchrony in Horus. In Proceedings of the 15th Symposium on Reliable
Distributed Systems, pages 140–149. IEEE, October 1996.

[59] Ayalvadi J. Ganesh, Anne-Marie Kermarrec, and Laurent Mas-
soulié. Peer-to-peer membership management for gossip-based proto-
cols. IEEE Transactions on Computers, 52(2):139–149, February 2003.

[60] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan
Boneh. Terra: a virtual machine-based platform for trusted computing.
In Proceedings of the 19th Symposium on Operating Systems Principles,
pages 193–206. ACM, October 2003.

[61] Morrie Gasser, Andy Goldstein, Charlie Kaufman, and Butler Lamp-
son. The digital distributed system security architecture. In Proceedings
of the 12th National Computer Security Conference, pages 305–319.
NIST, October 1989.

[62] Christos Gkantsidis, Thomas Karagiannis, Pablo Rodriguez, and Milan
Vojnović. Planet scale software updates. ACM SIGCOMM Computer
Communication Review, 36(4):423–434, October 2006.

[63] Ashvin Goel, Kenneth Po, Kamran Farhadi, Zheng Li, and Eyal
de Lara. The Taser intrusion recovery system. In Proceedings of
the 20th Symposium on Operating Systems Principles, pages 163–176.
ACM, October 2005.

[64] Lawrence A. Gordon, Martin P. Loeb, William Lucyshyn, and Robert
Richardson. 2006 CSI/FBI computer crime and security survey. An-
nual survey, Computer Security Institute, 600 Harrison Street, San
Francisco, CA, USA, July 2006.

[65] Karl Taro Greenfeld. Meet the Napster. TIME Magazine, 156(14),
October 2000.

[66] Saikat Guha and Paul Francis. Characterization and measurement of
TCP traversal through NATs and firewalls. In Proceedings of the 5th
Internet Measurement Conference, pages 199–211. USENIX, October
2005.

[67] Krishna P. Gummadi, Ramakrishna Gummadi, Steven D. Gribble,
Sylvia Ratnasamy, Scott Shenker, and Ion Stoica. The impact of
DHT routing geometry on resilience and proximity. In Proceedings of
the 2003 Conference on Applications, Technologies, Architectures, and

135

Protocols for Computer Communication, pages 381–394. ACM, August
2003.

[68] Anjali Gupta, Barbara Liskov, and Rodrigo Rodrigues. One hop
lookups for peer-to-peer overlays. In Proceedings of the 9th Workshop
on Hot Topics in Operating Systems, pages 7–12. USENIX, May 2003.

[69] Indranil Gupta, Kenneth P. Birman, and Robbert van Renesse. Fight-
ing fire with fire: using randomized gossip to combat stochastic scalabil-
ity limits. Quality and Reliability Engineering International, 18(3):165–
184, June 2002.

[70] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. The case
for Byzantine fault detection. In Proceedings of the 2nd Workshop on
Hot Topics in System Dependability. USENIX, November 2006.

[71] Frank Harary. The maximum connectivity of a graph. Proceedings
of the National Academy of Sciences of the United States of America,
48(7):1142–1146, July 1962.

[72] Tom Hargreaves. The FastTrack protocol. Specification Revision 1.19,
giFT-FastTrack, http://gift-fasttrack.berlios.de/, July 2004.

[73] Maya Haridasan and Robbert van Renesse. Defense against intrusion
in a live streaming multicast system. In Proceedings of the 6th Interna-
tional Conference on Peer-to-Peer Computing, pages 185–192. IEEE,
September 2006.

[74] Nikki Hemming. KaZaa. Software Version 3.2.5, Sherman Networks,
http://www.kazaa.com/, November 2006.

[75] John B. Horrigan. Home broadband adoption 2006. Report, PEW In-
ternet & American Life Project, 1615 L Street, NW, Suite 700, Wash-
ington, DC 20036, USA, May 2006.

[76] Martin Hutle, Dahlia Malkhi, and Ulrich Schmid Lidong Zhou. Chasing
the weakest system model for implementing Ω and consensus. Research
report 74/2005, Technische Universität Wien, July 2006.

[77] Dag Johansen, H̊avard Johansen, and Robbert van Renesse. Environ-
ment mobility—moving the desktop around. In Proceedings of the 2nd
Workshop on Middleware for Pervasive and Ad-hoc Computing, pages
150–154. ACM, October 2004.

136

http://gift-fasttrack.berlios.de/
http://www.kazaa.com/

[78] Dag Johansen, Robbert van Renesse, and Fred Schneider. WAIF: Web
of asynchronous information filters. In Future Directions in Distributed
Computing, volume 2584 of Lecture Notes on Computer Science, pages
81–86. Springer-Verlag, April 2003.

[79] H̊avard Johansen, André Allavena, and Robbert van Renesse. Fireflies:
Scalable support for intrusion-tolerant network overlays. In Proceedings
of the 1th EuroSys Conference, pages 3–13. ACM, October 2006.

[80] H̊avard Johansen, Dag Johansen, and Robbert van Renesse. FirePatch:
Secure and time-critical dissemination of software patches. In Proceed-
ings of the 22nd International Information Security Conference, pages
373–384. IFIP, Springer-Verlag, May 2007.

[81] H̊avard D. Johansen and Dag Johansen. Improving object search using
hints, gossip, and supernodes. In Proceedings of the 21st Symposium
on Reliable Distributed Systems: Workshop on Reliable Peer-to-Peer
Distributed Systems, pages 336–340. IEEE, October 2002.

[82] Ashlesha Joshi, Samuel T. King, George W. Dunlap, and Peter M.
Chen. Detecting past and present intrusions through vulnerability-
specific predicates. In Proceedings of the 20th Symposium on Operating
Systems Principles, pages 91–104. ACM, October 2005.

[83] Ari Juels and John Brainard. Client puzzles: A cryptographic coun-
termeasure against connection depletion attacks. In Proceedings of the
1999 Network and Distributed System Security Symposium, pages 151–
165. The Internet Society, February 1999.

[84] Idit Keidar, Jeremy Sussman, Keith Marzullo, and Danny Dolev.
Moshe: A group membership service for WANs. ACM Transactions
on Computer Systems, 20(3):191–238, August 2002.

[85] Anne-Marie Kermarrec, Laurent Massoulié, and Ayalvadi J. Ganesh.
Probabilistic reliable dissemination in large-scale systems. IEEE Trans-
actions on Parallel and Distributed Systems, 14(3):248–258, March
2003.

[86] Kim Potter Kihlstrom, Louise E. Moser, and Peter M. Melliar-Smith.
The SecureRing protocols for securing group communication. In Pro-
ceedings of the 31st Annual Hawaii International Conference on System
Sciences, pages 317–326. IEEE, January 1998.

137

[87] Kim Potter Kihlstrom, Louise E. Moser, and Peter M. Melliar-Smith.
The SecureRing group communication system. ACM Transactions on
Information and System Security, 4(4):371–406, November 2001.

[88] Kim Potter Kihlstrom, Louise E. Moser, and Peter M. Melliar-Smith.
Byzantine fault detectors for solving consensus. The Computer Journal,
46(1):16–35, January 2003.

[89] Dejan Kostić, Adolfo Rodriguez, Jeannie Albrecht, Abhijeet Bhirud,
and Amin Vahdat. Using random subsets to build scalable network
services. In Proceedings of the 4th Symposium on Internet Technologies
and Systems. USENIX, March 2003.

[90] Dejan Kostić, Adolfo Rodriguez, Jeannie Albrecht, and Amin Vahdat.
Bullet: High bandwidth data dissemination using an overlay mesh. In
Proceedings of the 19th Symposium on Operating Systems Principles,
pages 282–297. ACM, October 2003.

[91] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski,
Patrick Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea,
Hakim Weatherspoon, Chris Wells, and Ben Zhao. OceanStore: an ar-
chitecture for global-scale persistent storage. In Proceedings of the 9th
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 190–201. ACM, November
2000.

[92] Leslie Lamport. Time, clocks, and the ordering of events in a dis-
tributed system. Communications of the ACM, 21(7):558–565, July
1978.

[93] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine
generals problem. ACM Transactions on Programming Languages and
Systems, 4(3):382–401, July 1982.

[94] Mikel Larrea, Antonio. Fernández, and Sergio Arévalo. Optimal im-
plementation of the weakest failure detector for solving consensus. In
Proceedings of the 19th Symposium on Reliable Distributed Systems,
pages 52–59. IEEE, October 2000.

[95] Richard J. Larsen and Morris L. Marx. An Introduction to Mathemat-
ical Statistics and Its Applications. Prentice Hall, 3rd edition, 2001.

[96] Glyph Lefkowitz. Twisted Core. Software version 2.2, Twisted Matrix
Labs, http://twistedmatrix.com/, February 2006.

138

http://twistedmatrix.com/

[97] Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma, and
Steven Lim. A survey and comparison of peer-to-peer overlay net-
work schemes. IEEE Communications Surveys & Tutorials, 7(2):72–93,
2005.

[98] Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. Dis-
tributed Computing, 11(4):203–213, October 1998.

[99] Dahlia Malkhi, Michael Reiter, and Avishai Wool. The load and avail-
ability of Byzantine quorum systems. In Proceedings of the 16th Sym-
posium on Principles of Distributed Computing, pages 249–257. ACM,
August 1997.

[100] Dahlia Malkhi and Michael K. Reiter. An architecture for survivable co-
ordination in large distributed systems. IEEE Transactions on Knowl-
edge and Data Engineering, 12(2):187–202, April 2000.

[101] David L. Mills. A brief history of NTP time: memoirs of an Inter-
net timekeeper. ACM SIGCOMM Computer Communication Review,
33(2):9–21, April 2003.

[102] Yaron Minsky and Ari Trachtenberg. Practical set reconciliation. Tech-
nical report 2002-01, Boston University, 2002.

[103] Yaron Minsky, Ari Trachtenberg, and Richard Zippel. Set reconciliation
with nearly optimal communication complexity. IEEE Transactions on
Information Theory, 49(9):2212–2218, September 2003.

[104] Louise E. Moser, Peter M. Melliar-Smith, Deborah A. Agarwal, Ravi K.
Budhia, and Colleen A. Lingley-Papadopoulos. Totem: a fault-tolerant
multicast group communication system. Communications of the ACM,
39(4):54–63, April 1996.

[105] Kenneth E. Murphy, Charles M. Carter, and Steven O. Brown. The
exponential distribution: the good, the bad and the ugly. A practical
guide to its implementation. In Proceedings of the 2002 Annual Relia-
bility and Maintainability Symposium, pages 550–556. IEEE, January
2002.

[106] Musiclab, LLC. BearShare. Software version 6, Musiclab, LLC., http:
//www.bearshare.com/, November 2006.

[107] Rafael R. Obelheiro and Joni da Silva Fraga. A lightweight intrusion-
tolerant overlay network. In Proceedings of the 9th International

139

http://www.bearshare.com/
http://www.bearshare.com/

Symposium on Object and Component-Oriented Real-Time Distributed
Computing, pages 496–503. IEEE, April 2006.

[108] Andy Oram, editor. Peer-to-Peer: Harnessing the Power of Disruptive
Technologies. O’Reilly, March 2001.

[109] Vinay S. Pai, Kapil Kumar, Karthik Tamilmani, Vinay Sambamurthy,
and Alexander E. Mohr. Chainsaw: Eliminating trees from overlay
multicast. In Peer-to-Peer Systems IV: Revised Papers from the 4th In-
ternational Workshop on Peer-to-Peer Systems, volume 3640 of Lecture
Notes on Computer Science, pages 127–140. Springer-Verlag, February
2005.

[110] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agree-
ment in the presence of faults. Journal of the ACM, 27(2):228–234,
April 1980.

[111] Larry Peterson, Andy Bavier, Marc E. Fiuczynski, and Steve Muir.
Experiences building PlanetLab. In Proceedings of the 7th Sympo-
sium on Operating System Design and Implementation, pages 351–366.
USENIX, November 2006.

[112] Larry Peterson and Timothy Roscoe. The design principles of Planet-
Lab. ACM SIGOPS Operating Systems Review, 40(1):11–16, January
2006.

[113] Peter Pietzuch, Jeffrey Shneidman, Jonathan Ledlie, Matt Welsh,
Margo Seltzer, and Mema Roussopoulos. Evaluating DHT-based ser-
vice placement for stream-based overlays. In Peer-to-Peer Systems IV:
Revised Papers from the 4th International Workshop on Peer-to-Peer
Systems, volume 3640 of Lecture Notes on Computer Science, pages
275–286. Springer-Verlag, February 2005.

[114] Charles G. Plaxton, Rajmohan Rajaraman, and Andréa W. Richa.
Accessing nearby copies of replicated objects in a distributed environ-
ment. In Proceedings of the 9th Symposium on Parallel Algorithms and
Architectures, pages 311–320. ACM, June 1997.

[115] Venugopalan Ramasubramanian and Emin Gün Sirer. The design and
implementation of a next generation name service for the Internet.
In Proceedings of the 2004 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, pages 331–
342. ACM, September 2004.

140

[116] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and
Scott Shenker. A scalable content addressable network. In Proceedings
of the 2001 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, pages 161–172. ACM,
August 2001.

[117] Thomas Reidemeister, Klemens Bohm, Paul A. S. Ward, and Erik
Buchmann. Malicious behaviour in content-addressable peer-to-peer
networks. In Proceedings of the 3rd Annual Communication Networks
and Services Research Conference, pages 319–326, Washington, DC,
USA, May 2005. IEEE.

[118] Michael K. Reiter. Secure agreement protocols: Reliable and atomic
group multicast in Rampart. In Proceedings of the 2nd Conference on
Computer and Communications Security, pages 68–80. ACM, Novem-
ber 1994.

[119] Michael K. Reiter. A secure group membership protocol. IEEE Trans-
actions on Software Engineering, 22(1):31–42, January 1996.

[120] Sean Rhea, Patrick Eaton, Dennis Geels, Hakim Weatherspoon, Ben
Zhao, and John Kubiatowicz. Pond: The OceanStore prototype. In
Proceedings of the 2nd Conference on File and Storage Technologies.
USENIX, April 2003.

[121] John Risson and Tim Moors. Survey of research towards robust peer-to-
peer networks: Search methods. Technical report UNSW-EE-P2P-1-1,
University of New South Wales, Australia, September 2004.

[122] Jordan Ritter. Why Gnutella can’t scale. No, really. Report, Darkridge
Security Solutions, http://www.darkridge.com/, February 2001.

[123] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of
the ACM, 21(2):120–126, February 1978.

[124] Rodrigo Rodrigues and Charles Blake. When multi-hop peer-to-peer
routing matters. In Peer-to-Peer Systems III: Revised Papers from the
3rd International Workshop on Peer-to-Peer Systems, volume 3279 of
Lecture Notes on Computer Science, pages 112–122. Springer-Verlag,
February 2004.

141

http://www.darkridge.com/

[125] Rodrigo Rodrigues, Barbara Liskov, and Liuba Shrira. The design of a
robust peer-to-peer system. In Proceedings of the 10th ACM SIGOPS
European Workshop, pages 117–124. ACM, September 2002.

[126] Martin Roesch. Snort—lightweight intrusion detection for networks.
In Proceedings of the 13th Conference on System Administration, pages
229–238. USENIX, November 1999.

[127] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer systems.
In Proceedings of the 2001 International Conference on Distributed Sys-
tems Platforms, volume 2218 of Lecture Notes on Computer Science,
pages 329–350. IFIP/ACM, Springer-Verlag, November 2001.

[128] Antony I. T. Rowstron and Peter Druschel. Storage management and
caching in PAST, a large scale, persistent peer-to-peer storage utility.
In Proceedings of the 18th Symposium on Operating Systems Principles,
pages 188–201. ACM, October 2001.

[129] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in
system design. ACM Transactions on Computer Systems, 2(4):277–
288, November 1984.

[130] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A mea-
surement study of peer-to-peer file sharing systems. In Proceedings
of the 10th Multimedia Computing and Networking Conference. SPIE,
January 2002.

[131] Fred B. Schneider. Implementing fault-tolerant services using the state
machine approach: a tutorial. ACM Computing Surveys, 22(4):299–
319, December 1990.

[132] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van
Doorn, and Pradeep Khosla. Pioneer: verifying code integrity and
enforcing untampered code execution on legacy systems. In Proceedings
of the 20th Symposium on Operating Systems Principles, pages 1–16.
ACM, October 2005.

[133] Adi Shamir and Eran Tromer. Factoring large numbers with the
TWIRL device. In Advances in Cryptology–CRYPTO 2003, volume
2729 of Lecture Notes on Computer Science, pages 1–26. Springer-
Verlag, October 2003.

142

[134] Atul Singh, Miguel Castro, Peter Druschel, and Antony Rowstron. De-
fending against Eclipse attacks on overlay networks. In Proceedings of
the 11th ACM SIGOPS European Workshop. ACM, September 2004.

[135] Emil Sit and Robert Morris. Security considerations for peer-to-peer
distributed hash tables. In Peer-to-Peer Systems: Revised Papers from
the 1st International Workshop on Peer-to-Peer Systems, volume 2429
of Lecture Notes on Computer Science, pages 261–269. Springer-Verlag,
March 2002.

[136] Neil Spring, Larry Peterson, Andy Bavier, and Vivek Pai. Using Pla-
netLab for network research: Myths, realities, and best practices. ACM
SIGOPS Operating Systems Review, 40(1):17–24, January 2006.

[137] Raj Srinivasan. XDR: External data representation standard. RFC
1832, Sun Microsystems, August 1995.

[138] Mudhakar Srivatsa and Ling Liu. Vulnerabilities and security threats
in structured overlay networks: A quantitative analysis. In Proceedings
of the 20th Annual Computer Security Applications Conference, pages
252–261. IEEE, December 2004.

[139] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for Inter-
net applications. In Proceedings of the 2001 Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Com-
munication, pages 149–160. ACM, August 2001.

[140] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger,
M. Frans Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord:
A scalable peer-to-peer lookup protocol for Internet applications.
IEEE/ACM Transactions on Networking, 11(1):17–32, February 2003.

[141] Brad Stone. A lively market, legal and not, for software bugs. The
New York Times, online, January 30 2007.

[142] Daniel Stutzbach and Reza Rejaie. Understanding churn in peer-to-
peer networks. In Proceedings of the 6th Internet Measurement Con-
ference, pages 189–202. ACM, October 2006.

[143] Jeremy Sussman, Idit Keidar, and Keith Marzullo. Optimistic Virtual
Synchrony. In Proceedings of the 19th Symposium on Reliable Dis-
tributed Systems, pages 42–51. IEEE, October 2000.

143

[144] Marvin Theimer and Michael B. Jones. Overlook: scalable name service
on an overlay network. In Proceedings of the 22nd International Con-
ference on Distributed Computing Systems, pages 52–61. IEEE, July
2002.

[145] Robbert van Renesse, Kenneth P. Birman, and Silvano Maffeis. Horus:
a flexible group communication system. Communications of the ACM,
39(4):76–83, April 1996.

[146] Robbert van Renesse, Yaron Minsky, and Mark Hayden. A gossip-style
failure detection service. In Proceedings of the 1998 International Con-
ference on Distributed Systems Platforms and Open Distributed Pro-
cessing (Middleware), pages 55–70. IFIP, Springer-Verlag, September
1998.

[147] Guido van Rossum. Python. Software Release 2.3.5, PythonLabs,
http://www.python.org, February 2005.

[148] Spyros Voulgaris, Daniela Gavidia, and Maarten van Steen. CYCLON:
Inexpensive membership management for unstructured P2P overlays.
Journal of Network and Systems Management, 13(2):197–217, June
2005.

[149] Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft,
Alex C. Snoeren, Geoffrey M. Voelker, and Stefan Savage. Scalabil-
ity, fidelity, and containment in the Potemkin virtual honeyfarm. In
Proceedings of the 20th Symposium on Operating Systems Principles,
pages 148–162. ACM, October 2005.

[150] Helen J. Wang, Chuanxiong Guo, Daniel R. Simon, and Alf Zugen-
maier. Shield: vulnerability-driven network filters for preventing known
vulnerability exploits. In Proceedings of the 2004 Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer Com-
munication, pages 193–204. ACM, September 2004.

[151] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions
in the full SHA-1. In Advances in Cryptology–CRYPTO 2005, volume
3621 of Lecture Notes on Computer Science, pages 17–36. Springer-
Verlag, August 2005.

[152] Mark Weiser. The computer for the 21st century. ACM SIGMOBILE
Mobile Computing and Communications Review, 3(3):3–11, July 1999.

144

http://www.python.org

[153] Beverly Yang and Hector Garcia-Molina. Designing a super-peer net-
work. In Proceedings of the 19th International Conference on Data
Engineering, pages 49–60. IEEE, March 2003.

[154] Xinyan Zhang, Jiangchuan Liu, Bo Li, and Tak-Shing Peter Yum. Cool-
Streaming/DONet: A data-driven overlay network for for peer-to-peer
live media streaming. In Proceedings of the 24th Annual Joint Con-
ference of the IEEE Computer and Communications Societies, pages
2102–2111. IEEE, March 2005.

[155] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph. Tapestry:
An infrastructure for fault-tolerant wide-area location and routing.
Technical report UCB/CSD-01-1141, University of California, Berke-
ley, April 2001.

[156] Lidong Zhou, Fred B. Schneider, and Robbert van Renesse. COCA: A
secure distributed online certification authority. ACM Transactions on
Computer Systems, 20(4):329–368, November 2002.

145

146

Abbreviations

ALM Application-Level Multicast

API Application Programming Interface

Bps bytes per second

B Byte

CAN Content-Addressable Network

CA Certificate Authority

CDN Content-Distribution Network

DHT Distributed Hash Table

DNS Domain Name System

DoS Denial-of-Service

EST Eastern Standard Time

GB Gigabyte

GCS Group Communication System

GHz Gigahertz

Gbps Gigabits per second

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

IP Internet Protocol

147

kBps Kilobytes per second

kB Kilobyte

kbps Kilobits per second

MB Megabyte

MIPS Million Instructions Per Second

MTTF Mean Time To Failure

MTTR Mean Time To Recovery

NAT Network Address Translation

NTP Network Time Protocol

OHDHT One Hop Distributed Hash Table

P2P Peer-to-Peer

SCA Self-Certifying Alert

SHA Secure Hash Algorithm

SMR State Machine Replication

SSL Secure Socket Layer

TCP Transmission Control Protocol

UDP User Datagram Protocol

URI Uniform Resource Identifier

WAIF Wide-Area Information Filtering

WoV Window of Vulnerability

XDR External Data Representation

148

	Acknowledgements
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Peer-to-Peer Computing
	1.2 Research Issues
	1.2.1 Preventing Attacks
	1.2.2 Tolerating Attacks
	1.2.3 Thesis Statement
	1.2.4 Scope and Limitations

	1.3 Assumptions
	1.4 Methodology
	1.4.1 Disciplines in Practice
	1.4.2 PlanetLab Experiments
	1.4.3 Context of this Dissertation

	1.5 Summary of Contributions
	1.6 Outline of the Dissertation

	2 Overlay Networks
	2.1 Current Systems and Protocols
	2.1.1 Search Networks
	2.1.2 Content-Addressable Networks
	2.1.3 Content-Distribution Network
	2.1.4 Storage Networks

	2.2 General Model
	2.2.1 Definition
	2.2.2 Functional Components

	3 Design Rationale
	3.1 Key Design Requirements
	3.2 Identity Assignment
	3.3 Topology Management
	3.4 Messaging

	4 The Fireflies Membership Management Protocol
	4.1 Protocol Overview
	4.2 Certificate Authority
	4.2.1 Certificates
	4.2.2 Bounds on the Fraction of Byzantine Members
	4.2.3 Revoking Certificates

	4.3 Member Rings
	4.3.1 Formal Definitions
	4.3.2 The Probability of Having a Correct Monitor
	4.3.3 Disabling Byzantine Monitors

	4.4 Data Structures
	4.5 Valid Accusations
	4.6 Blocked Accusations
	4.7 Failure Detection
	4.7.1 Setting the Time-out Threshold
	4.7.2 Rounding Error
	4.7.3 Estimating Packet-Loss Rate
	4.7.4 Threshold Limits
	4.7.5 Pinging Attacks

	4.8 Gossip
	4.8.1 Ensuring Connectivity
	4.8.2 Pseudo-Random Mesh
	4.8.3 Time-out value
	4.8.4 Communication Efficiency

	4.9 Protocol Steps

	5 FiRE: The Fireflies Runtime Environment
	5.1 Overview
	5.2 Global Data Structures
	5.2.1 Configuration Options
	5.2.2 Data Objects
	5.2.3 Member Object

	5.3 Main Functionality
	5.3.1 Joining a Group
	5.3.2 Events
	5.3.3 Functions

	5.4 Internal Issues
	5.4.1 Membership Rings
	5.4.2 Gossip
	5.4.3 Adaptive Pinging Protocol

	6 Evaluation
	6.1 Simulations
	6.1.1 Overhead of Membership Maintenance
	6.1.2 The Effect of Byzantine Members

	6.2 PlanetLab
	6.2.1 Experimental Setup
	6.2.2 Measurement Study
	6.2.3 Network Performance

	7 Case Study: Disseminating Software Updates
	7.1 Background and Related Work
	7.2 Architecture and Assumptions
	7.3 Two-Phase Dissemination
	7.4 Secure Dissemination Overlay
	7.4.1 Mirror Mesh
	7.4.2 Data Dissemination
	7.4.3 Disconnected Nodes

	7.5 Evaluation

	8 Discussion
	8.1 Membership Management
	8.1.1 No Membership
	8.1.2 Partial Membership
	8.1.3 View-Synchronous Membership
	8.1.4 Weakly-Consistent Membership

	8.2 Timing Attacks
	8.2.1 Violation of Timing Bounds
	8.2.2 Weaker Models of Synchrony

	8.3 Applicability
	8.3.1 One-Hop Distributed Hash Table
	8.3.2 Multimedia Streaming

	9 Conclusions
	9.1 Results
	9.2 Future Work

	A Publications
	References
	Abbreviations

