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Abstract
Open-source communities depend on donated third-party
servers, known as mirrors, to distribute their software to mil-
lions of end-users. However, existing mirror infrastructures
lack the mechanisms to deal with the wide-range of faults
that can occur. In this paper we describe our ongoing work
to construct a mirror infrastructure that is highly resilient to
failures. In particular, our infrastructure is constructed to tol-
erate Byzantine failures so that a potential attacker cannot
deny user service even if he is in control of one or more mir-
rors.

Categories and Subject Descriptors C.2.4 [Distributed
Systems]: Distributed applications; D.4.5 [Reliability]: Fault-
tolerance; K.6.5 [Security and Protection]: Unauthorized
access

General Terms Reliability, security, design

Keywords Intrusion-tolerance, software distribution, over-
lay network, denial-of-service attack

1. Introduction
Open-source communities depend on third-party servers to
distribute their software. This distribution mechanism is
commonly referred to as software mirroring. Many large
open-source projects, such as the Linux Kernel Archive, the
Debian Linux project, and the Ubuntu Linux project are dis-
tributed this way. Millions of end-users, organizations, and
enterprises rely on these services for acquiring the software
components they need, or for acquiring important software
updates that fix critical software bugs and vulnerabilities.

Mirror sites are commonly operated by volunteering or-
ganizations and individuals that donate spare hosting capac-
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ity on their web and file servers to the task of distributing the
software. For instance, the Linux Kernel Archive is currently
being distributed through 87 mirrors located in 37 different
countries or territories. Operators include educational insti-
tutions, like the University of Wisconsin, and commercial
actors, like the Chicago based company SingleHop1. Other
large open-source communities, like the Debian and Ubuntu
Linux distributions, are similarly dependant upon such do-
nated third-party hosting capacity.

Unfortunately, existing mirror infrastructures are surpris-
ingly fragile as they implement few mechanisms for deal-
ing with faults. For instance, the Debian mirror mailing list2,
which is the Debian organization’s main venue for maintain-
ing its pool of mirrors, is riddled with observed errors that
must be mitigated manually by mirror operators. For some
users, such errors are only a nuisance. However, these er-
rors may also pose a hazard in the case where end-users are
dependant on the ability of downloading new software com-
ponents on demand, for instance to open received e-mail at-
tachments, or to receive critical software updates.

More alarmingly, by pretending to be a benevolent donor
running a mirror for the benefit of the open-source com-
munity, an attacker might get accepted as an official mir-
ror by some software vendor. In this case, the attacker has
intruded into that software vendor’s distribution channel en-
abling him to induce malicious arbitrary (Byzantine) faults
within the system. Although digital signatures are used by
most software vendors to prevent illicit modifications to the
distributed software, having gained control of one or more
mirrors, an attacker can potentially slow down or stop the
service. Such attacks are particularly hazardous when soft-
ware security updates are distributed since an attacker can
potentially reverse-engineer published security patches in
order to construct malware that targets the vulnerable code,
and then exploit any client that connects [2, 3, 8].

In this paper, we outline our ongoing effort to construct a
software mirror infrastructure that is highly resilient to fail-
ures. In particular, we want our infrastructure to be Byzan-
tine fault-tolerant so it is able to deal with the many types
of failures that can occur, and so that it can survive poten-

1 Source: http://www.kernel.org/mirrors/.
2 http://lists.debian.org/debian-mirrors/



tial attacks by malicious mirrors. The key idea is to orga-
nize the mirrors in an overlay-network structure where each
mirror selects multiple mirrors at random as partners. The
number of partners is adjusted to strike a balance between
fault-tolerance and scalability. Also, by layering our two-
phase dissemination protocol [12] on top of such a structure,
we can reduce the time in which a security-update derived
exploit remains effective, to the time it takes to distribute a
small cryptographic key.

2. System architecture
Software mirror infrastructures distinguish three roles: the
software vendor, mirrors, and clients. The software vendor
publishes his software, and subsequent updates, on a master
server for clients to download and install. The set of all
software published by a vendor is referred to as his software
repository. The vendor may update his software repository
by adding, updating, and removing software packages.

For scalability reasons, we cannot rely on all clients
downloading all software packages directly from the master
server. Instead, the vendor does not distribute his software
directly to the clients, but to the collection of mirrors.

Each software mirror maintains a read-only replica of
the vendor’s software repository. Mirrors stay up-to-date by
receiving updates from the master server or from some other
mirror. The software vendor typically lists mirror sites on
his web-page, kindly asking clients to use those in addition
to the master site when downloading software. The mirrors
are then responsible for providing the clients with software
packages upon request.

We assume that the software vendor is benign and that
he is trusted by both the clients and the mirrors. In par-
ticular, using public-key cryptography, mirrors and clients
can ascertain the authenticity of the software they down-
load. Mirrors are not trusted as they are administrated by
third-parties. As such, each mirror has a state that is either
correct, crashed, or Byzantine. Correct mirrors faithfully ex-
ecute the specified protocol, while crashed mirrors do not
execute any protocol steps. Byzantine mirrors are not bound
by the protocol and may execute arbitrary instructions. We
refer to mirrors that are either correct or Byzantine as live,
and mirrors that are either crashed or Byzantine as faulty.

Correct mirrors might be unreachable and appear crashed
to other mirrors due to transient network outages. Byzantine
mirrors can disguise themselves as correct mirrors by exe-
cuting the protocol, or as crashed mirrors by not executing
at all. Hence, we cannot, in general, determine which mir-
rors are Byzantine unless they reveal themselves as such by
sending messages that prove that they are misbehaving.

An attacker might gain control of a mirror by, for in-
stance, donating a server or by hacking a correct mirror.
However, we do assume that the fraction of Byzantine mir-
rors amongst all live mirrors can be probabilisticilly upper
bounded by a certain Pbyz. The need for such an upper

bound is an unfortunate but well established necessity [6,
14]. Clients are passive participants, and in particular do not
participate in the distribution of software. Thus, we do not
have to make assumptions on the correctness of clients.

3. Resilient software distribution
A software repository is a collection of software package
files organized in some directory structure. For instance, in
Debian Linux a software package is a deb archive file, which
can be downloaded and installed individually by the clients.
Debian releases both source software packages, which can
automatically be compiled by the clients, and pre-compiled
binary packages for a wide-range of computer architectures.
The Debian software repository contains a manifest file list-
ing all available software packages and their secure hash and
size. The clients typically use only a small subset of all avail-
able software. The manifest file, and other meta-data, is used
by the clients to select the packages they want to install and
download.

In existing mirror infrastructures, clients are typically
configured to receive software from a single mirror. If a
client c selects a faulty mirror as a software source, then c
is subject to the following two key problems:

• Whenever the software vendor publishes a new software
package p, he updates the manifest file to include infor-
mation about p. If the faulty mirror does not forward the
updated manifest file to c, then c will not learn about p.
Consequently, c will not be able to download and install
p. Although, having clients download manifest files di-
rectly from the master server solves this problem, this is
not an ideal solution as we want to minimize the server
infrastructure that the software vendor needs to maintain.

• If c has received the updated manifest file and tries to
download p, the faulty mirror might delay or stop c’s
reception of p by throttling or halting the download or
by sending corrupt data.

Clients can mask these faults by using multiple mirrors
as sources for software. For instance, in the case where
c knows about p, c can simply retry the download using
different mirrors until p is successfully received. However,
for distributing manifest files, clients need a mechanism to
determine when a sufficient number of mirrors have been
used in order to distinguish the case where a mirror is faulty
from the case where no new manifest file is available. We
will describe such a mechanism next.

3.1 Locating a correct mirror
We instrument each client such that they pick at least k mir-
rors at random from the set of all live mirrors, and use those
to receive information about available software packages. By
adjusting the value for k, we can increase the likelyhood that
at least one of the selected mirrors is correct. However, we
do not want to pick k too large, as this would generate un-



necessary load on the mirrors. Instead, we want to choose
the minimal value for k so the probability of a client having
only faulty mirrors becomes smaller than some configured
target fault-tolerance level ε.

Due to the randomization of mirror selection and the
probabilistic upper bound on the fraction on Byzantine mir-
rors among all live mirrors, Pbyz, the probability of a client
having selected only faulty mirrors is Pbyz

k. Hence, we can
find k by calculating:

min
k

: ε > Pbyz
k

For instance, given a fraction Pbyz = 0.10 of faulty mirrors
and a target fault-tolerance level of ε = 10−7, then each
client should connect to at least k = 7 random mirrors.

3.2 Mirror overlay network
For scalability reasons, it is not sufficient to offload the
clients from the master server to the pool of mirrors. As the
number of mirrors grows, we must also prevent the master
site from being overloaded with requests from the set of mir-
rors. The Debian organization has already realized this and
divides its mirror into two classes: primary and secondary
mirrors. Primary mirrors receive updates directly from the
master server. Secondary mirrors receive updates from either
a primary mirror or some other secondary mirror. Still, mir-
rors select only one upstream source to receive updates from.
Although, if kept balanced, diffusion trees distribute load ef-
ficiently, they do not tolerate failures well. For instance, if a
primary mirror m fails, all secondary mirrors receiving up-
dates from m will be affected. In our case, we are also con-
cerned with a potential intruder attempting to delay or stop
the distribution of critical software updates.

To tolerate Byzantine faults, we organize the mirrors such
that each mirror download updates from multiple mirrors in
a peer-to-peer like manner. For this, each mirror m chooses
t random partners from the set of all live mirrors and con-
nects to those. However, unlike with clients, it is not suffi-
cient to choose t such that m will have at least one correct
mirror with high probability. The resulting mesh of mirrors
must contain sufficient redundancy and diversity such that,
with high probability, the subgraph of correct mirrors are
connected, and that this subgraph includes the master server.
As there is an overhead associated with each partner that m
receives updates from, we want t to be as small as possible.

We can obtain a value for t using the classic result of
Erdös and Rényi [7], stating that in a random graph of
n nodes, if the probability of two nodes being connected
is pn = (log n + c + o(1))/n, then the probability of
the graph being connected goes to exp(− exp(−c)). In our
case, the number of correct mirrors, n, is expected to be
at least (1 − Pbyz) × N , where Pbyz is the upper bound
on the probability that a live mirror is Byzantine and N
is the total of the correct and the Byzantine mirrors. Then
the probability that one mirror is connected to another is

1 − (1 − 1/N)t ≈ t/N . Thus pn ≈ 2t/N . In order for
the correct mirrors to be connected with probability γ, we
obtain

t ≥ N

2n
·
(

log
−n

log γ
+ o(1)

)
For instance, given a fraction Pbyz = 0.10 of a mirror
being faulty and a target probability of γ = 1 − 10−7, then
each mirror should connect to at least 13 randomly selected
mirrors.

3.3 Access control
If an attacker is able to gain control of an unbounded num-
ber of mirrors, the ability of a distributed system to mask
Byzantine faults by means of redundancy is undermined [6].
To make it difficult for an attacker to enlist a large number of
mirrors under his control, we are deploying a simple mirror
access control mechanism based on public-key certificates.
Currently, we use commonly available public-key manage-
ment tools that are compliant with the X.509 standard.

To be accepted as a mirror, a server administrator must
first obtain a mirror certificate from the software vendor.
Upon receiving a request for such a certificate, the software
vendor must check the validity of the requesting site. For
instance, he could check that the requesting entity is indeed
a valid institution or individual, and that it seems reputable.
Access control is enforced by instrumenting correct clients
and mirrors to not accept connections from mirrors without
a valid mirror certificate. The list of valid mirror certificates
is distributed inside the software repository and through the
software vendor’s web-page.

Note that this scheme does not prevent an attacker from
entering the pool of mirrors as the software vendor may
make mistakes or be tricked into signing certificates for ma-
licious sites. However, it allows the vendor to limit the rate
at which the attacker can do so. As argued in Section 2, we
must assume that the fraction of Byzantine mirrors among
live mirrors can be kept below the configured probabilistic
upper bound Pbyz.

3.4 Maintaining up-to-date membership information
In order for our mirror selection schemes to work, mirrors
and clients must have an up-to-date list of all live mirrors.
We are not aware of any open-source communities that have
yet automated this task. For instance, the Debian community
maintains a web-page that lists all available mirrors. This
page is manually updated based on information that mirror
operators post on a dedicated mailing list. Clearly, a manual
membership maintenance mechanism does not scale well, is
slow, and is prone to errors. Also, if an attacker can wrongly
modify the membership views of correct mirrors by targeting
the underlying membership protocol, he may gain complete
control of our infrastructure [6].

To maintain the list of mirrors, we instrument mirrors to
use our Byzantine fault-tolerant membership protocol, Fire-
flies [11]. This protocol ensures, with high probability, that



Figure 1. Cleartext dissemination Figure 2. Two-phase dissemination

faulty mirrors cannot keep crashed mirrors in the view of live
mirrors, or live mirrors out of these views. For this, mirrors
monitor one another using an adaptive pinging protocol, and
issue accusations (failure notices) whenever a mirror is sus-
pected to have failed. If a mirror is falsely accused, it has the
opportunity to issue a rebuttal before it is removed from the
views of correct mirrors, thus preventing faulty mirrors from
incorrectly modifying the membership views.

3.5 Two-phase dissemination
Because software security updates contain information about
vulnerabilities, they can be reverse engineered into exploits.
Tools for doing this already exist [3, 8]. Consequently, there
is a race between hackers and clients to obtain software up-
dates first.

Since we cannot in general distinguish a malicious mirror
from a benign mirror, we must assume that the attacker will
have access to each update u as soon as the first upload of
u from the master server has completed. If t0 is this time
and ∆attack is the time needed by an attacker to reverse
engineer u into an exploit, then, as illustrated in Figure 1,
there is a window of vulnerability (WoV) that opens at time
t0 + ∆attack and closes when the number of clients that
have not yet downloaded and installed the update, shrinks
to insignificance.

In order to reduce the opportunity for an attacker to ex-
ploit clients by reverse-engineering software updates, we are
instrumenting our mirror infrastructure to make use of our
two-phase dissemination scheme. This makes the size of the
WoV fixed and small despite the fact that voluminous data
has to be transferred over the wire [12].

The idea is to disseminate security updates in two phases.
In phase one, we distribute an encrypted version of the soft-
ware update. The decryption key is known only to the soft-
ware vendor, such that any attacker receiving u cannot start
reverse engineering it. Thus, the WoV remains closed. In
phase two we disseminate the decryption key. The advan-
tage of this scheme is, as illustrated in Figure 2, that the WoV
does not open until t1 + ∆attack, where t1 is the time when
phase two starts. As such, the size of the WoV only depends
on the time it takes to disseminate a small fixed-size decryp-
tion key.

4. Implementation issues
Demanding that mirror operators make vast changes to their
existing server infrastructure will most likely reduce the
good-will of mirror operators, which open-source commu-
nities are so dependant upon. We also expect that some mir-
ror operators will be slower than others to deploy new func-
tionality. It is therefore important the any changes to exist-
ing mirror infrastructures are done incrementally and with-
out breaking backward compatibility. Fortunately, the tools
used for file mirroring in most large open-source projects
lend themselves well to incremental modifications as they
are segmented into the following three functional compo-
nents, which we can modify individually:

• A local filesystem where the mirrored software repository
is stored.

• A file-server configured to serve software repository files
from the local file system to both mirrors and clients.
Typically, these are HTTP or FTP servers.

• A script that runs periodically to check for and download
updates.

This design is also attractive from a security point-of-
view because it allows administrators to host a software mir-
ror using existing server infrastructure and security policies.
It also allows the mirror operator to limit the code dealing
with inbound network requests to well tested software, like
the Apache web server, which already benefits from an ac-
tive development community. We are therefore constructing
our mirror infrastructure tools so that it follows this design.

The client-side software for selecting, downloading, and
installing software packages is typically part of the software
repository. As such, updating this software is unproblematic
as we can implement the needed changes and distribute the
updated software through the mirror infrastructure.

5. Related work
With approximately 300 million clients, Microsoft Windows
Update is currently the world’s largest software update ser-
vice [10]. The service consists of a (presumably large) pool
of servers that clients periodically pull for updates. Un-
like mirrors in open-source communities, Microsoft update



servers are trusted sites. Even so, an attacker might try to
gain control of one or more servers by, for instance, in-
stalling Trojan programs or exploiting software vulnerabili-
ties [1]. It is unclear how Microsoft protects its servers from
such intrusions.

Several peer-to-peer content distribution systems, like
SplitStream and Bullet [4, 13], have been constructed to in-
crease the upstream bandwidth of a publisher by spreading
data forwarding load to all recipients. However, these sys-
tems cannot be used in critical infrastructures, like software
mirroring services, as they do not tolerate Byzantine faults.

Fu et al. proposes to use a read-only variant of the Secure
File System (SFS) for software mirroring [9]. However, SFS
assumes a static membership and does not tolerate omission
attacks. Also, the SFS requires specific kernel-level func-
tionality that might not be available on all mirror servers.

Existing Byzantine fault-tolerant state-machine replica-
tion protocols, like the BFT protocol [5], can potentially be
used for constructing resilient mirroring services. Unfortu-
nately, the overhead of consensus makes these protocols un-
able to scale to the hundreds of mirrors in use by many open-
source communities. Fortunately, the problem of diffusing
software updates is weaker than that of traditional state ma-
chine replication as mirrors do not have to establish agree-
ment on the sequence of operations to execute. Also, all soft-
ware updates are signed with the software vendor’s private
key, so we can avoid the overhead of establishing their au-
thenticity using redundancy [15].

6. Concluding remarks
Open-source communities are dependent on third-party mir-
rors to distribute their software. However, existing mirror in-
frastructures are surprisingly fragile as they implement few
mechanisms to deal with faults. In particular, we are con-
cerned that an attacker can intrude into the pool of mirrors
simply by hosting a mirror site and subsequently induce arbi-
trary failures. By doing so, an attacker can deny users service
and delay the distribution of critical security updates.

In this paper we have outlined our ongoing effort for con-
structing a resilient software mirror infrastructure. To deal
with the wide variety of faults that might occur, and to deal
with intruders in particular, we are constructing our mirror-
ing service such that it can tolerate Byzantine faults. These
ideas are based on our earlier experience with intrusion-
tolerant overlay networks and patch distribution [11, 12].
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