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Abstract

In this paper we present a prototype enterprise informa-
tion run-time heavily inspired by the fundamental principles
of autonomic computing. Through self-configuration, self-
optimization, and self-healing techniques, this run-time tar-
gets next-generation extreme scale information-access sys-
tems. We demonstrate these concepts in a processing cluster
that allocates resources dynamically upon demand.

1 Introduction

Enterprise search systems are ripe for change. In their in-
fancy, these systems were primarily used for information re-
trieval purposes, with main data sources being internal cor-
porate archives. The service they provided resembled much
traditional Internet search services. Emerging trends in en-
terprise computing, though, is to use search technology as
an embedded part of business-critical applications like, for
instance, business intelligence, e-commerce, surveillance,
security, and fraud detection. Consequently, traditional
search software needs to change to meet new requirements.
We denote the next generation of enterprise search soft-
ware as information access technology, capturing the notion
that the software resides between large heterogeneous data
repositories and complex data intensive applications. This
is where databases and enterprise run-time software used to
play key roles.

Traditional Internet search services are typically pro-
vided by complex networks of up to several hundred thou-
sands of interconnected computers. Configuring and main-
taining these large-scale clusters is a daunting task. Hence,
only a handful companies have sufficient resources and
skills to provide such services. At the same time, many cor-
porations are in need of this type of technology in-house,
but do not have the necessary manpower, economy, and
technical skill to even consider such solutions.

∗This work is supported in part by the Research Council of Norway
through the National Center for Research-based Innovation program. Dag
Johansen is also chief scientist at Fast Search & Transfer.

This is where autonomic computing [18] comes into
play. Our goal is that information access software should
keep manual control and interventions outside the compu-
tational loop as much as possible. Closely related is that
such autonomic solutions should consolidate and utilize re-
sources better, with the net effect that large-scale informa-
tion access systems can be built in smaller scale. In this
vein, self-configuration, self-optimization, and self-healing
become important.

We are building the next generation run-time for fu-
ture generation information access systems. Autonomic be-
havior is fundamental in order to dynamically adapt and
reconfigure to accommodate changing situations. Hence,
the run-time needs efficient mechanisms for monitoring
and controlling applications and their resource, moving ap-
plications transparently while in execution, scheduling re-
sources in accordance to end-to-end service-level agree-
ments (SLAs), adding functional replicas to handle sudden
load spikes, and the like.

In this paper, we present a prototype run-time with self-
configuration, self-optimization, and self-healing proper-
ties. Key to support these features are accurate and effi-
cient monitoring and control components. The paper is or-
ganized as follows. First, we present the overall architecture
and high-level aspects of our run-time. Then, in Section 3,
we present a prototype implementation with relevant exper-
iments. In Section 4, we discuss aspects of our work, with
related work presented in Section 5. Finally, Section 6 con-
cludes.

2 The Dynamic Enterprise Bus

We denote our run-time the Dynamic Enterprise Bus
(DEB). DEB incorporates autonomous behavior and has
the following properties. First, DEB is self-configuring. In-
stalling and configuring enterprise systems have fundamen-
tal problems often ignored in academia, but that are highly
realistic when a front-line industry engineer is on a cus-
tomer location deploying complex search software integrat-
ing with a terabyte data store. At deployment, DEB sup-
ports a worm-like growth of the computation, much the way

Fourth International Conference on Autonomic and Autonomous Systems

0-7695-3093-1/08 $25.00 © 2008 IEEE
DOI 10.1109/ICAS.2008.43

100



worm applications grew on demand [15] or itinerant-style
mobile agents were applied [9]. As such, an information-
access application can be deployed initially on one or a
few physical machines, and grow dynamically into a larger
physical deployment while warming up with real data.

Second, DEB provides self-optimization properties by in-
tegrating distributed fine-grained monitoring with a reac-
tive control scheme. Traditionally, this type of monitoring-
control loop, often defined as a reactive system, has been
applied in robotics and embedded systems. However, we
conjecture that this type of autonomic behavior has appli-
cability in management of, for instance, large-scale enter-
prise and Internet applications serving millions of interac-
tive users, like e-commerce and enterprise search platforms,
real-time information filtering applications in the financial
sector, and enterprise business intelligence systems. These
are applications with extreme availability requirements.

By enabling DEB to autonomously make policy deci-
sions based on collected real-time metrics, applications can
be dynamically adjusted to use different availability, relia-
bility, and consistency tradeoffs in accordance to measured
real-time load. For instance, during load spikes, a weaker
consistency model might be used to ensure high availabil-
ity. Also, if multiple applications run concurrently, resource
allocations can change in accordance with per application
load and priority.

To facilitate this type of policy decisions, our monitoring
scheme collects run-time metrics from the whole software
stack including data from the hardware level, the virtual-
machine level, and data from the individual application
components. Using this data, a DEB computation can be
dynamically adjusted to, for instance, the underlying physi-
cal platform and grow and shrink on demand.

Accurate failure-detection is instrumental to enable our
third autonomic property, self-healing. Since we have in-
tegrated monitoring throughout DEB, we attempt to effi-
ciently detect failures and recover from them in a transpar-
ent manner. That is, once an application component is de-
tected as failed, recovery actions might, for instance, have
other components compensate for that failure.

2.1 Computational Model

Based on our experience with existing enterprise search
systems, we have devised a computational model or struc-
tural pattern that often occurs. It is a computational model
where data flows uni-directionally through a sequence of
computational stages, with output from one stage used as
input to the next stage. This structure is typically found in
existing search systems in the document processing pipeline
residing between a document crawler and the indexing soft-
ware. From a few to almost a hundred different functional
components can be found in such a pipeline. The query pro-
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Figure 1. DEB processing pipeline with five
stages

cessing pipeline is similarly structured, where user queries
are sent through a series of computational stages before be-
ing matched against an index store.

In our model, each pipeline stage is a processing element
that communicates through a publish-consume abstraction.
We use outbound queues, where multiple successor stages
can subscribe to its content and pull (consume) elements
from the queue on demand. This design decision is taken to
ease scalability and fault tolerance. Inserting a stage is, for
instance, done by bootstrapping it and then letting it start
consuming elements from its predecessor stage. Hence, a
computation is by default modelled as a directed acyclic
graph. Figure 1 illustrates a DEB pipeline with five com-
putational stages.

2.2 Application-Level Failure Detection

Failure detection is typically an integrated part of a low-
level fault-tolerance mechanism. We propose to add failure
detection to the application itself as a non-functional com-
ponent. This is inspired by the end-to-end argument [13],
a principle advocating that some functionality is better pro-
vided outside the communication substrate.

DEB behavior that qualify as failures are specified by the
overlying applications through the insertion of application
specific SLAs. Simply put, a component, system, or appli-
cation is said to fail if it does not meet its guaranteed SLAs.
We denote this as a quality failure.

Quality failures resemble hard real-time failing mod-
els [1], but is more extensive since SLAs can contain more
than just meeting a specific deadline. One example is that
end-to-end processing latency of a document can have a
maximum bound limit. For instance, a customer integrat-
ing an enterprise search solution with a net auction service
might have a requirement that new or updated data elements
must be indexed within a certain number of milliseconds. If
this quality level is not met in practice, the system has failed
from the customer’s perspective.
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We also argue for failure handling being a first order
design consideration. Fault-tolerance schemes are often
retrofitted into existing architectures as an afterthought, but
we suggest an explicit application-level failure handling
mode of operandi. This is in particular true with our failure
model, where standard replication schemes do not neces-
sarily work. The state machine approach [14], for instance,
works well for fail-stop and Byzantine failures, but its inher-
ited replication scheme might add to the type of failures we
attempt to solve. Meeting an end-to-end SLA may require
use of as little redundant computing as possible. One excep-
tion is situations where enough resources can be added, as
cleverly done in, for instance, the Google MapReduce com-
putation [4] when a fan-out computation is lagging behind.

2.3 Stateful Failure Detection

We consider a failure detector as a fundamental building
block for high-available autonomous systems. There are,
however, a number of problems related to failure detection.
One obvious problem is to correctly detect remote events,
like, for instance, distinguishing a crashed machine from a
slow machine or a transient network failure. Another, and
important problem in an autonomous system, is false posi-
tives when failures are detected too eagerly.

Consider a situation where a false positive is dissem-
inated. This can, for instance, trigger a self-healing ac-
tion by the autonomous system. A commonly used tech-
nique for failure handling is to abort an action and redirect
a request or job to another replica. This often implies ex-
tra overhead including state-transfer and process activation.
Meanwhile, the presumably failed machine becomes avail-
able again and recovers activity, maybe after a transient net-
work error. In this case, the recovery action was triggered
too fast and the costly overhead of failure-handling could
have been avoided.

As such, we make two contributions here. First, we
introduce a stateful failure detector in DEB. In its sim-
plest form, it can be a log of sent and received ping mes-
sages between two machines in the system, which can be
used to check the current situation against a historic record.
Maybe a potential failure is something that occurs regularly
at 3:00 AM–3:05 AM due to a local cron job, which should
be detected as a normal situation and not as a failure.

Second, we add control functionality to the DEB failure
detector such that distributed management policies can be
implemented. For instance, a proactive recovery scheme
can be tied to a local failure detector, so that emerging
trends and suspicions can trigger some local management
action. This can be local garbage collection, preemption of
running jobs, and the like.

3 The DEB Run-Time

Important components of our DEB run-time architecture
include monitoring, control, failure detector, and pipeline
processing functions. A DEB installation spans one or more
machines, each machine hosts one or more DEB nodes.
Each node contains core DEB functions like monitoring and
control, but can be specialized to perform specific tasks like
coordination and pipeline processing.

When starting, a DEB node announces its presence to
the DEB run-time by sending it a register message that in-
cludes the node’s unique name, network listening port, and
current state. The DEB monitor collects and maintains his-
toric records of such changes to the system’s state, includ-
ing OS and hardware level attributes like CPU and network
load. These records are made available to all nodes. In our
current prototype, we use the Ganglia cluster monitoring
system [12] to both collect and distribute system metrics.

Applications register pipeline configurations and SLAs
with the run-time. Each pipeline configuration contains
the description of which computational steps that are to
be performed and in what order they are to be executed.
Each SLA describes constraints on the run-time attributes.
Upon receiving the pipeline configuration and the SLA, DEB
self-organizes in order to accommodate the application,
which includes allocating one or more nodes to execute
the pipeline processing stages and connecting the stages to-
gether in the correct order. To avoid inconsistencies, global
changes like node allocations are coordinated by a master
control node.

To illustrate the ability of DEB to self-configure, we con-
structed a synthetic CPU bound pipeline consisting of three
sequential stages: a generator stage, a compute stage, and
a fuse stage. The generator stage injects the data items that
are to be processed. Each data item contains a monotoni-
cally increasing sequence number, the time of its creation,
some random data, and a load factor. The compute stage ex-
ecutes a synthetic CPU intensive operation on each received
data item. The number of CPU cycles required to complete
one particular data item is linearly depending on the data
item’s load factor. The fuse stage collects all processed data
items and reports end-to-end latency.

To execute this pipeline, we deployed it on an eight node
DEB installation, n0, . . . , n7, spanning eight machines. All
eight machines were equipped with two quad-core Intel
Xenon processors and 8 GB of RAM. Each second, each
node reports its status, including the stage it is executing
and to which other nodes it is connected. Initially, all
nodes were idle with node n0 acting as the master con-
trol node. Upon receiving the pipeline configuration, n0

allocated node n1 to run the generator stage, n2 to run the
compute stage, and n3 to run the fuse stage. The remain-
ing nodes n4, . . . , n7 were idle. Next, the control node in-
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Figure 2. Initial test configuration

structed each node in turn, starting with n3, to receive data
items from the previous pipeline stage, resulting in the ini-
tial configuration shown in Figure 2.

Next we illustrate the DEB’s ability to adapt the pipeline
to changing load. We do this by adding a SLA that spec-
ifies an upper threshold value of 1.5 seconds on the com-
pletion of each data item. We then increase the process-
ing load of the compute stages by increasing the data items
load factor linearly with their sequence number. Figure 3
plots the resulting end-to-end latency for data items over
time and the number of allocated compute stages. As can
be seen from the figure, at time 335 seconds the end-to-end
latency exceeds the set threshold of 1.5 seconds. At this
time a quality failure is detected. The DEB failure han-
dler then inspects the pipeline to identify the stage that adds
most to the total end-to-end latency, which in this particu-
lar scenario will be the compute stage. To compensate, the
failure handler increases the pipeline’s processing capacity
by adding a replica of the compute stage to the idle node
n4. Consequently, the end-to-end latency drops below the
threshold. As the load continues to increase, similar quality
failures are detected at times 725, 1069, and 1369. Each
time, the failure handler compensates by deploying another
compute stage to an idle node, resulting in an immediate
latency drop.

To illustrate the DEB’s ability to self-heal, we kept the
load factor stable. We then crashed one of the nodes run-
ning a compute stage. As shown in Figure 4, the load fac-
tor is initially kept stable at the level where four nodes run
the compute stage, resulting in a stable end-to-end latency
below the threshold of 1.5 seconds. At time 559 seconds,
when we crashed a node, the measured latency spiked due
to the reduction in processing capacity. Next, the failure
handler compensates by allocating another node to run the
failed compute stage, which brought the latency back down.

4 Discussion

We have demonstrated our DEB run-time prototype,
which evolves and adapts to meet SLAs. These SLAs
have been negotiated prior to application deployment, and
are formally agreed upon contracts between the DEB run-
time and its applications. This service quality guarantee
determines how the DEB run-time system performs self-
configuration, self-optimization, and self-healing. This al-
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Figure 3. Adapting the processing pipeline to
linearly increasing processing load
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lows DEB to transparently compensate for failures and
mitigate performance bottlenecks by, for instance, adding
pipeline stages as demonstrated in Section 3.

Accurate failure detection is a pivotal component in
DEB. We therefore monitor and collect a wide-range of
run-time metrics, which are used as input to the DEB failure
detection mechanism. One important property of the DEB
failure detection scheme is that collected data can be kept
for later correlation purposes. This way, we can use time
series of collected data to mitigate false positives and there-
fore minimize the use of costly error recovery schemes.

Another applicability of this stateful failure detector is
similar to the approach by RAD Labs [2], where current run-
time data is compared to previously collected data. This is
used to trace critical paths through a computation and po-
tentially detect anomalies and failures that would otherwise
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not be discovered by low-level failure detection schemes.
For instance, a computer might respond to a ping indicat-
ing that everything is in order. However, higher-level ap-
plication data can still not deliver its functionality within
the expected time frame. For this purpose, multiple failure-
detection modules have to interact and cooperate.

Extensive fine grained monitoring has two contradictory
issues associated with it. First, the collected data can be
used positively for important run-time management deci-
sions. Second, monitoring might have negative impact on
system performance as network bandwidth, storage, and
processing capacity must be spent in order to collect, store,
and process the monitored system metrics. To solve this
scaling problem, we attempt to minimize network traffic by
local monitoring and control if possible. Hence, monitored
metrics can be kept local to a node if management deci-
sions can be executed locally. For instance, a pipeline stage
can monitor the size of its outbound queue. If the queue
becomes full, the stage can slow down and choke back the
predecessor in the pipeline, it can flag an alert to a remote
management service, or more compelling, actually trigger
creation of a replica of the pipeline bottleneck.

This decentralized combination of local monitoring
combined with associated policy decisions is what we de-
note a proactive failure detector. Proactivity captures the
notion that policy decisions can be taken prior to the ap-
pearance of a potential failure. This is again based on local
suspicions reported by the local failure detector. The net
effect of this in-network management structure is reduction
of data on the wire and related latency problems.

We argue for monitoring of data through the whole ver-
tical software layer stack. This includes application-level
monitoring, or more accurately put, application-level fail-
ure detection. Closely related to this end-to-end argument
inspired approach, is that applications also treat failures as
a first order design consideration. So far, non-functional
requirements of applications have as a rule often been sup-
ported by the underlying run-time. We do not intend to sup-
plement this standard approach, but rather complement it
with specific policy decisions embedded in the application
itself. Again, this is based on the principle that some error
recovery actions are better handled by the application itself.

Our autonomous run-time is surprisingly simple in com-
plexity, especially when related to the powerful autonomic
properties it provides. This simplicity stems from the com-
putational model we deliberately chose, where a distributed
computation is modelled as a directed acyclic graph of
functional transformation stages. These are interconnected
through outbound queues polled (and consumed) by one or
more successor stages. One can consider each such func-
tional stage as one step in a computation organized in con-
secutive steps that makes progress one after the other. This
lends itself naturally to a checkpoint/resume scheme for

error recovery, or to replication schemes solving failures
at run-time. Similarly, this scheme also lends itself natu-
rally to a dynamic incremental growth provisioning model.
Adding extra capacity can now be done without human in-
tervention in most situations.

5 Related Work

The inner workings of several large-scale enterprise
systems illustrate well the complexity of enterprise sys-
tems [4, 5, 8]. Although the DEB run-time shares many sim-
ilar functions with these systems, we incorporate the prin-
ciple of autonomous computing to a greater extent.

Techniques for autonomous computing have previously
been used within the realm of Peer-to-Peer (P2P) comput-
ing. For instance, P2P routing substrates self-organize to
maintain routing invariants during changes in the overlay
topology [16]. Storage networks self-heal by adding new
object replicas when storage nodes fail [7]. Such techniques
are also applicable in DEB. However, each P2P overlay
network is designed to provision for only a small range of
applications and can in isolation not efficiently support the
wider range of functions found in an enterprise setting.

We structure our computations similarly to how SEDA
computation are organized [17]. In SEDA, applications are
structured as stages connected by explicit event (communi-
cation) queues. The SEDA architecture is typically demon-
strated at a single site like, for instance, a web server, while
our applications are intended to span many computers.

There exists an extensive body of theoretical work on
failure detector oracles [3]. In practice, failure detectors
within the fail-stop model use variants of pinging or heart-
beats in combination with timeouts to distinguish correct
processes from crashed ones. The Fireflies protocol [10]
avoids the problems of a static global time-out by adjusting
time-outs locally according to measured packet-loss rates.
Algorithms for detecting certain Byzantine failures have
also been proposed [6, 11]. Although the DEB platform can
accommodate such failure detectors, we currently do not
consider the full range of Byzantine faults. However, as ar-
gued by Doudou et al. [6], the notion of Byzantine faults is
intimately associated with the overlying application, which
we address in DEB through application specific SLAs.

A similar scheme to our application-level failure han-
dling has previously been implemented in NAP, our fault-
tolerance protocol for mobile agents [9]. In NAP, a mobile
agent has left behind a rear-guard agent (or several) that
acts as a failure detector. Upon detecting a failure, the rear-
guard agent performs application specific recovery actions.
The Dynamo storage system by Amazon [5] uses a similar
recovery approach with application-assisted conflict resolu-
tion.
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6 Conclusion

Our novel contributions is as follows. First, we pro-
pose a stateful, proactive failure detection scheme that is
embedded in a run-time for information access applica-
tions. This is used to implement autonomic behavior like
self-configuration, self-optimization, and self-healing. Self-
healing is harder than one might consider at a first glance,
because an autonomous fault-tolerant system should be able
to repair itself independently. Having a too eager failure-
detection mechanism then, might trigger costly error recov-
ery actions too early. A stateful one can be used to correlate
current events with historic events to detect anomalies more
accurately.

Next, we demonstrate that our extensible, pipelined pro-
gramming model can be implemented and deployed on a
cluster of computers with autonomic properties supported.
We demonstrate through experiments that, for instance, load
surges can be dynamically handled by incrementally adding
resources. This happens transparently while the computa-
tion is running.

Also, we propose application-level failure detection as
a concept. Such a detector allows applications to identify
more holistic application-level failures, be it that portions of
the application are saturated or that end-to-end SLAs are vi-
olated. Finally, we propose failure recovery actions as a first
order design consideration for high-availability systems.
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